ETH Price: $3,122.85 (+0.11%)

Contract

0x3d72440af4b0312084BC51A2038180876D208832

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

Please try again later

Advanced mode:
Parent Transaction Hash Block From To
View All Internal Transactions

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
CurveLiqArbitrage

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
pragma solidity 0.8.20;

import {Math} from "openzeppelin-math/Math.sol";
import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ICurvePool} from "../../interfaces/ICurvePool.sol";
import {ICurveNGPool} from "../../interfaces/ICurveNGPool.sol";
import {Constants} from "../Constants.sol";

contract CurveLiqArbitrage {
    using Math for uint256;

    // Constants
    uint256 public constant CURVE_UNIT = 1e18;
    uint256 public constant PROP_MIN = 1e16;
    uint256 public constant PROP_MAX = 1e20;
    uint256 public constant MAX_ITERS = 255;
    uint256 public constant INV_PHI = 618033988749894848;

    // Errors
    error ConvergenceError(
        uint256 propMin,
        uint256 propMax,
        uint256 epsilonTheory,
        uint256 epsilonActual
    );

    /**
     * @dev Previews the rate of LP tokens obtained per unit of token0, when depositing at a given proportion.
     * @param curvePool Address of curve pool
     * @param depositInToken0 Total deposit denominated in token 0.
     * @param proportion proportion at which we want to add liquidity: numberIBTs/numberPTs. In 18 decimals.
     * @return Amount of Curve LP tokens minted per unit of token0 deposited at a given proportion of token0 and token1.
     */
    function previewUnitaryAddLiquidity(
        address curvePool,
        uint256 depositInToken0,
        uint256 proportion
    ) public view returns (uint256) {
        // Constraints: amountToken0 + last_prices * amountToken1 = depositInToken0
        // and amountToken0/amountToken1 = proportion
        // Hence: amountToken0 = amountToken1 * proportion
        // and amountToken1 = depositInToken0/(proportion + last_prices)
        uint256 amountToken1 = depositInToken0.mulDiv(
            CURVE_UNIT,
            proportion + ICurvePool(curvePool).last_prices()
        );

        uint256 amountToken0 = amountToken1.mulDiv(proportion, CURVE_UNIT);

        uint256 tokenUnit = 10 ** IERC20Metadata(ICurvePool(curvePool).coins(0)).decimals();

        return
            ICurvePool(curvePool).calc_token_amount([amountToken0, amountToken1]).mulDiv(
                tokenUnit,
                depositInToken0
            );
    }

    /**
     * @dev Adaptation of above method to support Curve NG pools
     * @dev Previews the rate of LP tokens obtained per unit of token0, when depositing at a given proportion.
     * @param curvePool Address of curve pool
     * @param depositInToken0 Total deposit denominated in token 0.
     * @param proportion proportion at which we want to add liquidity: numberIBTs/numberPTs. In 18 decimals.
     * @return Amount of Curve LP tokens minted per unit of token0 deposited at a given proportion of token0 and token1.
     */
    function previewNGUnitaryAddLiquidity(
        address curvePool,
        uint256 depositInToken0,
        uint256 proportion
    ) public view returns (uint256) {
        // Constraints: amountToken0 + last_prices * amountToken1 = depositInToken0
        // and amountToken0/amountToken1 = proportion
        // Hence: amountToken0 = amountToken1 * proportion
        // and amountToken1 = depositInToken0/(proportion + last_prices)
        uint256 amountToken1 = depositInToken0.mulDiv(
            CURVE_UNIT,
            proportion + ICurveNGPool(curvePool).last_prices()
        );

        uint256 amountToken0 = amountToken1.mulDiv(proportion, CURVE_UNIT);

        uint256 tokenUnit = 10 ** IERC20Metadata(ICurveNGPool(curvePool).coins(0)).decimals();

        return
            ICurveNGPool(curvePool).calc_token_amount([amountToken0, amountToken1], true).mulDiv(
                tokenUnit,
                depositInToken0
            );
    }

    /**
     * @dev Searches for the proportion that maximizes a liquidity deposit of value depositInToken0, using golden section
     * search. Concretely, it maximizes the amount of LP tokens received.
     * Golden Section Search reference: https://en.wikipedia.org/wiki/Golden-section_search
     * @param curvePool Address of curve pool
     * @param depositInToken0 Total deposit denominated in token0.
     * @param epsilon Error tolerance (18 decimals)
     * @return Proportion that maximizes the amount of LP tokens minted.
     */
    function findBestProportion(
        address curvePool,
        uint256 depositInToken0,
        uint256 epsilon
    ) public view returns (uint256) {
        uint256 propMin = PROP_MIN;
        uint256 propMax = PROP_MAX;

        uint256 m1 = 0;
        uint256 m2 = 0;
        uint256 iters = 0;

        uint256 lpRate1 = 0;
        uint256 lpRate2 = 0;

        while (propMax - propMin > epsilon) {
            if (iters > MAX_ITERS) {
                revert ConvergenceError(propMin, propMax, epsilon, propMax - propMin);
            }

            m1 = propMax - (propMax - propMin).mulDiv(INV_PHI, CURVE_UNIT);
            m2 = propMin + (propMax - propMin).mulDiv(INV_PHI, CURVE_UNIT);

            lpRate1 = previewUnitaryAddLiquidity(curvePool, depositInToken0, m1);
            lpRate2 = previewUnitaryAddLiquidity(curvePool, depositInToken0, m2);

            if (lpRate1 > lpRate2) {
                propMax = m2;
            } else {
                propMin = m1;
            }

            ++iters;
        }

        return (propMin + propMax) / 2;
    }

    /**
     * @dev Adaptation of the above method to support Curve NG pools
     * @dev Searches for the proportion that maximizes a liquidity deposit of value depositInToken0, using golden section
     * search. Concretely, it maximizes the amount of LP tokens received.
     * Golden Section Search reference: https://en.wikipedia.org/wiki/Golden-section_search
     * @param curvePool Address of curve pool
     * @param depositInToken0 Total deposit denominated in token0.
     * @param epsilon Error tolerance (18 decimals)
     * @return Proportion that maximizes the amount of LP tokens minted.
     */
    function findBestProportionNG(
        address curvePool,
        uint256 depositInToken0,
        uint256 epsilon
    ) public view returns (uint256) {
        uint256 propMin = PROP_MIN;
        uint256 propMax = PROP_MAX;

        uint256 m1 = 0;
        uint256 m2 = 0;
        uint256 iters = 0;

        uint256 lpRate1 = 0;
        uint256 lpRate2 = 0;

        while (propMax - propMin > epsilon) {
            if (iters > MAX_ITERS) {
                revert ConvergenceError(propMin, propMax, epsilon, propMax - propMin);
            }

            m1 = propMax - (propMax - propMin).mulDiv(INV_PHI, CURVE_UNIT);
            m2 = propMin + (propMax - propMin).mulDiv(INV_PHI, CURVE_UNIT);

            lpRate1 = previewNGUnitaryAddLiquidity(curvePool, depositInToken0, m1);
            lpRate2 = previewNGUnitaryAddLiquidity(curvePool, depositInToken0, m2);

            if (lpRate1 > lpRate2) {
                propMax = m2;
            } else {
                propMin = m1;
            }

            ++iters;
        }

        return (propMin + propMax) / 2;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // ? `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // ? `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.20;

import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface for Curve TwoCrypto-NG pool
 */
interface ICurveNGPool is IERC20Metadata {
    function coins(uint256 index) external view returns (address);

    function balances(uint256 index) external view returns (uint256);

    function A() external view returns (uint256);

    function gamma() external view returns (uint256);

    function D() external view returns (uint256);

    function token() external view returns (address);

    function price_scale() external view returns (uint256);

    function price_oracle() external view returns (uint256);

    function future_A_gamma_time() external view returns (uint256);

    function future_A_gamma() external view returns (uint256);

    function initial_A_gamma_time() external view returns (uint256);

    function initial_A_gamma() external view returns (uint256);

    function fee_gamma() external view returns (uint256);

    function mid_fee() external view returns (uint256);

    function out_fee() external view returns (uint256);

    function allowed_extra_profit() external view returns (uint256);

    function adjustment_step() external view returns (uint256);

    function admin_fee() external view returns (uint256);

    function ma_time() external view returns (uint256);

    function get_virtual_price() external view returns (uint256);

    function fee() external view returns (uint256);

    function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256);

    function get_dx(uint256 i, uint256 j, uint256 dy) external view returns (uint256);

    function last_prices() external view returns (uint256);

    function calc_token_amount(
        uint256[2] calldata amounts,
        bool deposit
    ) external view returns (uint256);

    function calc_withdraw_one_coin(
        uint256 _token_amount,
        uint256 i
    ) external view returns (uint256);

    function exchange(uint256 i, uint256 j, uint256 dx, uint256 min_dy) external returns (uint256);

    function exchange(
        uint256 i,
        uint256 j,
        uint256 dx,
        uint256 min_dy,
        address receiver
    ) external returns (uint256);

    function add_liquidity(
        uint256[2] calldata amounts,
        uint256 min_mint_amount
    ) external returns (uint256);

    function add_liquidity(
        uint256[2] calldata amounts,
        uint256 min_mint_amount,
        address receiver
    ) external returns (uint256);

    function remove_liquidity(uint256 amount, uint256[2] calldata min_amounts) external;

    function remove_liquidity(
        uint256 amount,
        uint256[2] calldata min_amounts,
        address receiver
    ) external;

    function remove_liquidity_one_coin(
        uint256 token_amount,
        uint256 i,
        uint256 min_amount
    ) external;

    function remove_liquidity_one_coin(
        uint256 token_amount,
        uint256 i,
        uint256 min_amount,
        address receiver
    ) external;
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.20;

/**
 * @dev Interface for Curve CryptoSwap pool
 */
interface ICurvePool {
    function coins(uint256 index) external view returns (address);

    function balances(uint256 index) external view returns (uint256);

    function A() external view returns (uint256);

    function gamma() external view returns (uint256);

    function D() external view returns (uint256);

    function token() external view returns (address);

    function price_scale() external view returns (uint256);

    function future_A_gamma_time() external view returns (uint256);

    function future_A_gamma() external view returns (uint256);

    function initial_A_gamma_time() external view returns (uint256);

    function initial_A_gamma() external view returns (uint256);

    function fee_gamma() external view returns (uint256);

    function mid_fee() external view returns (uint256);

    function out_fee() external view returns (uint256);

    function allowed_extra_profit() external view returns (uint256);

    function adjustment_step() external view returns (uint256);

    function admin_fee() external view returns (uint256);

    function ma_half_time() external view returns (uint256);

    function get_virtual_price() external view returns (uint256);

    function fee() external view returns (uint256);

    function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256);

    function last_prices() external view returns (uint256);

    function calc_token_amount(uint256[2] calldata amounts) external view returns (uint256);

    function calc_withdraw_one_coin(
        uint256 _token_amount,
        uint256 i
    ) external view returns (uint256);

    function exchange(
        uint256 i,
        uint256 j,
        uint256 dx,
        uint256 min_dy,
        bool use_eth,
        address receiver
    ) external returns (uint256);

    function add_liquidity(
        uint256[2] calldata amounts,
        uint256 min_mint_amount
    ) external returns (uint256);

    function add_liquidity(
        uint256[2] calldata amounts,
        uint256 min_mint_amount,
        bool use_eth,
        address receiver
    ) external returns (uint256);

    function remove_liquidity(uint256 amount, uint256[2] calldata min_amounts) external;

    function remove_liquidity(
        uint256 amount,
        uint256[2] calldata min_amounts,
        bool use_eth,
        address receiver
    ) external;

    function remove_liquidity_one_coin(
        uint256 token_amount,
        uint256 i,
        uint256 min_amount
    ) external;

    function remove_liquidity_one_coin(
        uint256 token_amount,
        uint256 i,
        uint256 min_amount,
        bool use_eth,
        address receiver
    ) external;
}

File 7 of 7 : Constants.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

library Constants {
    /// @dev 18 decimal unit
    uint256 internal constant UNIT = 1e18;

    /// @dev identifier for native ETH
    address public constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

    /// @dev maximal number of iterations in the secant method algorithm
    uint256 internal constant MAX_ITERATIONS_SECANT = 255;

    /// @dev maximal number of iterations in the linear search following secant method algorithm
    uint256 internal constant MAX_ITERATIONS_LINEAR_SEARCH = 255;

    /// @dev determines the rate at which an input value is scaled in each iteration of linear search
    uint256 internal constant SCALING_FACTOR_LINEAR_SEARCH = 1e6;

    /// @dev precision divisor for the secant method
    uint256 internal constant PRECISION_DIVISOR = 1000;

    /// @dev Used for identifying cases when this contract's balance of a token is to be used as an input
    /// This value is equivalent to 1<<255, i.e. a singular 1 in the most significant bit.
    uint256 internal constant CONTRACT_BALANCE =
        0x8000000000000000000000000000000000000000000000000000000000000000;

    /// @dev Used as a flag for identifying that msg.sender should be used, saves gas by sending more 0 bytes
    address internal constant MSG_SENDER = address(0xc0);

    /// @dev Used as a flag for identifying address(this) should be used, saves gas by sending more 0 bytes
    address internal constant ADDRESS_THIS = address(0xe0);
}

Settings
{
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "appendCBOR": true,
    "bytecodeHash": "ipfs",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
    "openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/",
    "openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/",
    "openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/",
    "openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/",
    "openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/",
    "openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/",
    "config/=lib/spectra-contracts-configs/script/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "DiamondRouter/=lib/DiamondRouter/",
    "halmos-cheatcodes/=lib/DiamondRouter/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "solidity-stringutils/=lib/DiamondRouter/lib/solidity-stringutils/",
    "spectra-contracts-configs/=lib/spectra-contracts-configs/"
  ],
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"propMin","type":"uint256"},{"internalType":"uint256","name":"propMax","type":"uint256"},{"internalType":"uint256","name":"epsilonTheory","type":"uint256"},{"internalType":"uint256","name":"epsilonActual","type":"uint256"}],"name":"ConvergenceError","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"CURVE_UNIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INV_PHI","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_ITERS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PROP_MAX","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PROP_MIN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"curvePool","type":"address"},{"internalType":"uint256","name":"depositInToken0","type":"uint256"},{"internalType":"uint256","name":"epsilon","type":"uint256"}],"name":"findBestProportion","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"curvePool","type":"address"},{"internalType":"uint256","name":"depositInToken0","type":"uint256"},{"internalType":"uint256","name":"epsilon","type":"uint256"}],"name":"findBestProportionNG","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"curvePool","type":"address"},{"internalType":"uint256","name":"depositInToken0","type":"uint256"},{"internalType":"uint256","name":"proportion","type":"uint256"}],"name":"previewNGUnitaryAddLiquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"curvePool","type":"address"},{"internalType":"uint256","name":"depositInToken0","type":"uint256"},{"internalType":"uint256","name":"proportion","type":"uint256"}],"name":"previewUnitaryAddLiquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]

608060405234801561000f575f80fd5b50610a168061001d5f395ff3fe608060405234801561000f575f80fd5b5060043610610090575f3560e01c806381321f951161006357806381321f95146100eb5780639afc8dbc146100fe578063b9dc6bfa14610111578063f14dda6e14610119578063ff930a9e14610127575f80fd5b806303e370711461009457806355bf9990146100b95780636322c667146100cc57806378b9088d146100db575b5f80fd5b6100a76100a2366004610790565b610136565b60405190815260200160405180910390f35b6100a76100c7366004610790565b61033e565b6100a7670de0b6b3a764000081565b6100a768056bc75e2d6310000081565b6100a76100f9366004610790565b6104ba565b6100a761010c366004610790565b6105e6565b6100a760ff81565b6100a7662386f26fc1000081565b6100a7670893b2a3668e24c081565b5f806101b6670de0b6b3a7640000866001600160a01b031663c146bf946040518163ffffffff1660e01b8152600401602060405180830381865afa158015610180573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101a491906107c2565b6101ae90866107ed565b8691906106ba565b90505f6101cc8285670de0b6b3a76400006106ba565b60405163c661065760e01b81525f600482018190529192506001600160a01b0388169063c661065790602401602060405180830381865afa158015610213573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102379190610806565b6001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610272573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102969190610821565b6102a190600a610921565b90506103318187896001600160a01b031663ed8e84f360405180604001604052808881526020018981525060016040518363ffffffff1660e01b81526004016102eb929190610957565b602060405180830381865afa158015610306573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061032a91906107c2565b91906106ba565b93505050505b9392505050565b5f80610388670de0b6b3a7640000866001600160a01b031663c146bf946040518163ffffffff1660e01b8152600401602060405180830381865afa158015610180573d5f803e3d5ffd5b90505f61039e8285670de0b6b3a76400006106ba565b60405163c661065760e01b81525f600482018190529192506001600160a01b0388169063c661065790602401602060405180830381865afa1580156103e5573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104099190610806565b6001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610444573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104689190610821565b61047390600a610921565b90506103318187896001600160a01b0316638d8ea7276040518060400160405280888152602001898152506040518263ffffffff1660e01b81526004016102eb9190610974565b5f662386f26fc1000068056bc75e2d6310000082808080805b886104de8888610982565b11156105c15760ff83111561052d5786868a6104fa8383610982565b604051631b024b2b60e21b8152600481019490945260248401929092526044830152606482015260840160405180910390fd5b61054c670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b6105569087610982565b9450610577670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b61058190886107ed565b935061058e8b8b8761033e565b915061059b8b8b8661033e565b9050808211156105ad578395506105b1565b8496505b6105ba83610995565b92506104d3565b60026105cd87896107ed565b6105d791906109c1565b9b9a5050505050505050505050565b5f662386f26fc1000068056bc75e2d6310000082808080805b8861060a8888610982565b11156105c15760ff8311156106265786868a6104fa8383610982565b610645670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b61064f9087610982565b9450610670670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b61067a90886107ed565b93506106878b8b87610136565b91506106948b8b86610136565b9050808211156106a6578395506106aa565b8496505b6106b383610995565b92506105ff565b5f838302815f1985870982811083820303915050805f036106ee578382816106e4576106e46109ad565b0492505050610337565b80841161070e5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b6001600160a01b038116811461078d575f80fd5b50565b5f805f606084860312156107a2575f80fd5b83356107ad81610779565b95602085013595506040909401359392505050565b5f602082840312156107d2575f80fd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610800576108006107d9565b92915050565b5f60208284031215610816575f80fd5b815161033781610779565b5f60208284031215610831575f80fd5b815160ff81168114610337575f80fd5b600181815b8085111561087b57815f1904821115610861576108616107d9565b8085161561086e57918102915b93841c9390800290610846565b509250929050565b5f8261089157506001610800565b8161089d57505f610800565b81600181146108b357600281146108bd576108d9565b6001915050610800565b60ff8411156108ce576108ce6107d9565b50506001821b610800565b5060208310610133831016604e8410600b84101617156108fc575081810a610800565b6109068383610841565b805f1904821115610919576109196107d9565b029392505050565b5f61033760ff841683610883565b805f5b6002811015610951578151845260209384019390910190600101610932565b50505050565b60608101610965828561092f565b82151560408301529392505050565b60408101610800828461092f565b81810381811115610800576108006107d9565b5f600182016109a6576109a66107d9565b5060010190565b634e487b7160e01b5f52601260045260245ffd5b5f826109db57634e487b7160e01b5f52601260045260245ffd5b50049056fea2646970667358221220bef52e5e9362f14f1386fabc481752dbb11e478700c2e8ca03c835ae1729dea564736f6c63430008140033

Deployed Bytecode

0x608060405234801561000f575f80fd5b5060043610610090575f3560e01c806381321f951161006357806381321f95146100eb5780639afc8dbc146100fe578063b9dc6bfa14610111578063f14dda6e14610119578063ff930a9e14610127575f80fd5b806303e370711461009457806355bf9990146100b95780636322c667146100cc57806378b9088d146100db575b5f80fd5b6100a76100a2366004610790565b610136565b60405190815260200160405180910390f35b6100a76100c7366004610790565b61033e565b6100a7670de0b6b3a764000081565b6100a768056bc75e2d6310000081565b6100a76100f9366004610790565b6104ba565b6100a761010c366004610790565b6105e6565b6100a760ff81565b6100a7662386f26fc1000081565b6100a7670893b2a3668e24c081565b5f806101b6670de0b6b3a7640000866001600160a01b031663c146bf946040518163ffffffff1660e01b8152600401602060405180830381865afa158015610180573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101a491906107c2565b6101ae90866107ed565b8691906106ba565b90505f6101cc8285670de0b6b3a76400006106ba565b60405163c661065760e01b81525f600482018190529192506001600160a01b0388169063c661065790602401602060405180830381865afa158015610213573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102379190610806565b6001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610272573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102969190610821565b6102a190600a610921565b90506103318187896001600160a01b031663ed8e84f360405180604001604052808881526020018981525060016040518363ffffffff1660e01b81526004016102eb929190610957565b602060405180830381865afa158015610306573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061032a91906107c2565b91906106ba565b93505050505b9392505050565b5f80610388670de0b6b3a7640000866001600160a01b031663c146bf946040518163ffffffff1660e01b8152600401602060405180830381865afa158015610180573d5f803e3d5ffd5b90505f61039e8285670de0b6b3a76400006106ba565b60405163c661065760e01b81525f600482018190529192506001600160a01b0388169063c661065790602401602060405180830381865afa1580156103e5573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104099190610806565b6001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610444573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104689190610821565b61047390600a610921565b90506103318187896001600160a01b0316638d8ea7276040518060400160405280888152602001898152506040518263ffffffff1660e01b81526004016102eb9190610974565b5f662386f26fc1000068056bc75e2d6310000082808080805b886104de8888610982565b11156105c15760ff83111561052d5786868a6104fa8383610982565b604051631b024b2b60e21b8152600481019490945260248401929092526044830152606482015260840160405180910390fd5b61054c670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b6105569087610982565b9450610577670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b61058190886107ed565b935061058e8b8b8761033e565b915061059b8b8b8661033e565b9050808211156105ad578395506105b1565b8496505b6105ba83610995565b92506104d3565b60026105cd87896107ed565b6105d791906109c1565b9b9a5050505050505050505050565b5f662386f26fc1000068056bc75e2d6310000082808080805b8861060a8888610982565b11156105c15760ff8311156106265786868a6104fa8383610982565b610645670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b61064f9087610982565b9450610670670893b2a3668e24c0670de0b6b3a764000061032a8a8a610982565b61067a90886107ed565b93506106878b8b87610136565b91506106948b8b86610136565b9050808211156106a6578395506106aa565b8496505b6106b383610995565b92506105ff565b5f838302815f1985870982811083820303915050805f036106ee578382816106e4576106e46109ad565b0492505050610337565b80841161070e5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b6001600160a01b038116811461078d575f80fd5b50565b5f805f606084860312156107a2575f80fd5b83356107ad81610779565b95602085013595506040909401359392505050565b5f602082840312156107d2575f80fd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610800576108006107d9565b92915050565b5f60208284031215610816575f80fd5b815161033781610779565b5f60208284031215610831575f80fd5b815160ff81168114610337575f80fd5b600181815b8085111561087b57815f1904821115610861576108616107d9565b8085161561086e57918102915b93841c9390800290610846565b509250929050565b5f8261089157506001610800565b8161089d57505f610800565b81600181146108b357600281146108bd576108d9565b6001915050610800565b60ff8411156108ce576108ce6107d9565b50506001821b610800565b5060208310610133831016604e8410600b84101617156108fc575081810a610800565b6109068383610841565b805f1904821115610919576109196107d9565b029392505050565b5f61033760ff841683610883565b805f5b6002811015610951578151845260209384019390910190600101610932565b50505050565b60608101610965828561092f565b82151560408301529392505050565b60408101610800828461092f565b81810381811115610800576108006107d9565b5f600182016109a6576109a66107d9565b5060010190565b634e487b7160e01b5f52601260045260245ffd5b5f826109db57634e487b7160e01b5f52601260045260245ffd5b50049056fea2646970667358221220bef52e5e9362f14f1386fabc481752dbb11e478700c2e8ca03c835ae1729dea564736f6c63430008140033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.