Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00Multichain Info
N/A
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
SpectraPriceOracleFactory
Compiler Version
v0.8.22+commit.4fc1097e
Optimization Enabled:
No with 200 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.22; import "openzeppelin-contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol"; import "openzeppelin-contracts/proxy/beacon/BeaconProxy.sol"; import {SpectraPriceOracle} from "./SpectraPriceOracle.sol"; import {ZeroCouponDiscountModel} from "./models/OracleZCBModel.sol"; import {LinearDiscountModel} from "./models/OracleLinearModel.sol"; contract SpectraPriceOracleFactory is AccessManagedUpgradeable { address public spectraPriceOracleBeacon; /// @notice Event emitted when a new Oracle is deployed. event OracleCreated(address indexed pt, address indexed oracle, address indexed discountModel); event SpectraPriceOracleBeaconChanged(address indexed oldBeacon, address indexed newBeacon); /** * @notice Constructor of the contract */ constructor() { _disableInitializers(); // using this so that the deployed logic contract later cannot be initialized. } /** * @notice Initializer of the contract * @param _initialAuthority The address of the access manager. */ function initialize(address _initialAuthority, address _spectraPriceOracleBeacon) external initializer { __AccessManaged_init(_initialAuthority); require(_spectraPriceOracleBeacon != address(0), "SpectraPriceOracleBeacon cannot be zero"); spectraPriceOracleBeacon = _spectraPriceOracleBeacon; emit SpectraPriceOracleBeaconChanged(address(0), _spectraPriceOracleBeacon); } function setSpectraPriceOracleBeacon(address _spectraPriceOracleBeacon) external restricted { require(_spectraPriceOracleBeacon != address(0), "SpectraPriceOracleBeacon cannot be zero"); emit SpectraPriceOracleBeaconChanged(spectraPriceOracleBeacon, _spectraPriceOracleBeacon); spectraPriceOracleBeacon = _spectraPriceOracleBeacon; } /** * @dev Deploys a new `SpectraOracle` for a given PT. * @param _pt The address of the Principal Token (PT). * @param _discountModel The discount model address. * @return oracle The address of the newly deployed Oracle. */ function createOracle( address _pt, address _discountModel, uint256 initialImpliedAPY, address initOwner ) external returns (address oracle) { require(_pt != address(0), "PT address cannot be zero"); bytes memory _data = abi.encodeWithSelector( SpectraPriceOracle(address(0)).initialize.selector, _pt, _discountModel, initialImpliedAPY, initOwner ); // Deploy a new oracle contract oracle = address(new BeaconProxy(spectraPriceOracleBeacon, _data)); emit OracleCreated(_pt, oracle, _discountModel); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Ownable struct OwnableStorage { address _owner; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300; function _getOwnableStorage() private pure returns (OwnableStorage storage $) { assembly { $.slot := OwnableStorageLocation } } /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ function __Ownable_init(address initialOwner) internal onlyInitializing { __Ownable_init_unchained(initialOwner); } function __Ownable_init_unchained(address initialOwner) internal onlyInitializing { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { OwnableStorage storage $ = _getOwnableStorage(); return $._owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { OwnableStorage storage $ = _getOwnableStorage(); address oldOwner = $._owner; $._owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/manager/AccessManaged.sol) pragma solidity ^0.8.20; import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol"; import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol"; import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol"; import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface, * implementing a policy that allows certain callers to access certain functions. * * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public` * functions, and ideally only used in `external` functions. See {restricted}. */ abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged { /// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged struct AccessManagedStorage { address _authority; bool _consumingSchedule; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00; function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) { assembly { $.slot := AccessManagedStorageLocation } } /** * @dev Initializes the contract connected to an initial authority. */ function __AccessManaged_init(address initialAuthority) internal onlyInitializing { __AccessManaged_init_unchained(initialAuthority); } function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing { _setAuthority(initialAuthority); } /** * @dev Restricts access to a function as defined by the connected Authority for this contract and the * caller and selector of the function that entered the contract. * * [IMPORTANT] * ==== * In general, this modifier should only be used on `external` functions. It is okay to use it on `public` * functions that are used as external entry points and are not called internally. Unless you know what you're * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security * implications! This is because the permissions are determined by the function that entered the contract, i.e. the * function at the bottom of the call stack, and not the function where the modifier is visible in the source code. * ==== * * [WARNING] * ==== * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`] * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These * functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function * if no calldata is provided. (See {_checkCanCall}). * * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length. * ==== */ modifier restricted() { _checkCanCall(_msgSender(), _msgData()); _; } /// @inheritdoc IAccessManaged function authority() public view virtual returns (address) { AccessManagedStorage storage $ = _getAccessManagedStorage(); return $._authority; } /// @inheritdoc IAccessManaged function setAuthority(address newAuthority) public virtual { address caller = _msgSender(); if (caller != authority()) { revert AccessManagedUnauthorized(caller); } if (newAuthority.code.length == 0) { revert AccessManagedInvalidAuthority(newAuthority); } _setAuthority(newAuthority); } /// @inheritdoc IAccessManaged function isConsumingScheduledOp() public view returns (bytes4) { AccessManagedStorage storage $ = _getAccessManagedStorage(); return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0); } /** * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the * permissions set by the current authority. */ function _setAuthority(address newAuthority) internal virtual { AccessManagedStorage storage $ = _getAccessManagedStorage(); $._authority = newAuthority; emit AuthorityUpdated(newAuthority); } /** * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata * is less than 4 bytes long. */ function _checkCanCall(address caller, bytes calldata data) internal virtual { AccessManagedStorage storage $ = _getAccessManagedStorage(); (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay( authority(), caller, address(this), bytes4(data[0:4]) ); if (!immediate) { if (delay > 0) { $._consumingSchedule = true; IAccessManager(authority()).consumeScheduledOp(caller, data); $._consumingSchedule = false; } else { revert AccessManagedUnauthorized(caller); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol) pragma solidity ^0.8.20; import {IAuthority} from "./IAuthority.sol"; library AuthorityUtils { /** * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data. * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting. */ function canCallWithDelay( address authority, address caller, address target, bytes4 selector ) internal view returns (bool immediate, uint32 delay) { (bool success, bytes memory data) = authority.staticcall( abi.encodeCall(IAuthority.canCall, (caller, target, selector)) ); if (success) { if (data.length >= 0x40) { (immediate, delay) = abi.decode(data, (bool, uint32)); } else if (data.length >= 0x20) { immediate = abi.decode(data, (bool)); } } return (immediate, delay); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol) pragma solidity ^0.8.20; interface IAccessManaged { /** * @dev Authority that manages this contract was updated. */ event AuthorityUpdated(address authority); error AccessManagedUnauthorized(address caller); error AccessManagedRequiredDelay(address caller, uint32 delay); error AccessManagedInvalidAuthority(address authority); /** * @dev Returns the current authority. */ function authority() external view returns (address); /** * @dev Transfers control to a new authority. The caller must be the current authority. */ function setAuthority(address) external; /** * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs * attacker controlled calls. */ function isConsumingScheduledOp() external view returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/manager/IAccessManager.sol) pragma solidity ^0.8.20; import {Time} from "../../utils/types/Time.sol"; interface IAccessManager { /** * @dev A delayed operation was scheduled. */ event OperationScheduled( bytes32 indexed operationId, uint32 indexed nonce, uint48 schedule, address caller, address target, bytes data ); /** * @dev A scheduled operation was executed. */ event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev A scheduled operation was canceled. */ event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev Informational labelling for a roleId. */ event RoleLabel(uint64 indexed roleId, string label); /** * @dev Emitted when `account` is granted `roleId`. * * NOTE: The meaning of the `since` argument depends on the `newMember` argument. * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role, * otherwise it indicates the execution delay for this account and roleId is updated. */ event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember); /** * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous. */ event RoleRevoked(uint64 indexed roleId, address indexed account); /** * @dev Role acting as admin over a given `roleId` is updated. */ event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin); /** * @dev Role acting as guardian over a given `roleId` is updated. */ event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian); /** * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached. */ event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since); /** * @dev Target mode is updated (true = closed, false = open). */ event TargetClosed(address indexed target, bool closed); /** * @dev Role required to invoke `selector` on `target` is updated to `roleId`. */ event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId); /** * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached. */ event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since); error AccessManagerAlreadyScheduled(bytes32 operationId); error AccessManagerNotScheduled(bytes32 operationId); error AccessManagerNotReady(bytes32 operationId); error AccessManagerExpired(bytes32 operationId); error AccessManagerLockedRole(uint64 roleId); error AccessManagerBadConfirmation(); error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId); error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector); error AccessManagerUnauthorizedConsume(address target); error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector); error AccessManagerInvalidInitialAdmin(address initialAdmin); /** * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule} * & {execute} workflow. * * This function is usually called by the targeted contract to control immediate execution of restricted functions. * Therefore we only return true if the call can be performed without any delay. If the call is subject to a * previously set delay (not zero), then the function should return false and the caller should schedule the operation * for future execution. * * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise * the operation can be executed if and only if delay is greater than 0. * * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail * to identify the indirect workflow, and will consider calls that require a delay to be forbidden. * * NOTE: This function does not report the permissions of the admin functions in the manager itself. These are defined by the * {AccessManager} documentation. */ function canCall( address caller, address target, bytes4 selector ) external view returns (bool allowed, uint32 delay); /** * @dev Expiration delay for scheduled proposals. Defaults to 1 week. * * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately, * disabling any scheduling usage. */ function expiration() external view returns (uint32); /** * @dev Minimum setback for all delay updates, with the exception of execution delays. It * can be increased without setback (and reset via {revokeRole} in the case event of an * accidental increase). Defaults to 5 days. */ function minSetback() external view returns (uint32); /** * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied. * * NOTE: When the manager itself is closed, admin functions are still accessible to avoid locking the contract. */ function isTargetClosed(address target) external view returns (bool); /** * @dev Get the role required to call a function. */ function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64); /** * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay. */ function getTargetAdminDelay(address target) external view returns (uint32); /** * @dev Get the id of the role that acts as an admin for the given role. * * The admin permission is required to grant the role, revoke the role and update the execution delay to execute * an operation that is restricted to this role. */ function getRoleAdmin(uint64 roleId) external view returns (uint64); /** * @dev Get the role that acts as a guardian for a given role. * * The guardian permission allows canceling operations that have been scheduled under the role. */ function getRoleGuardian(uint64 roleId) external view returns (uint64); /** * @dev Get the role current grant delay. * * Its value may change at any point without an event emitted following a call to {setGrantDelay}. * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event. */ function getRoleGrantDelay(uint64 roleId) external view returns (uint32); /** * @dev Get the access details for a given account for a given role. These details include the timepoint at which * membership becomes active, and the delay applied to all operation by this user that requires this permission * level. * * Returns: * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted. * [1] Current execution delay for the account. * [2] Pending execution delay for the account. * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled. */ function getAccess( uint64 roleId, address account ) external view returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect); /** * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this * permission might be associated with an execution delay. {getAccess} can provide more details. */ function hasRole(uint64 roleId, address account) external view returns (bool isMember, uint32 executionDelay); /** * @dev Give a label to a role, for improved role discoverability by UIs. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleLabel} event. */ function labelRole(uint64 roleId, string calldata label) external; /** * @dev Add `account` to `roleId`, or change its execution delay. * * This gives the account the authorization to call any function that is restricted to this role. An optional * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation * that is restricted to members of this role. The user will only be able to execute the operation after the delay has * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}). * * If the account has already been granted this role, the execution delay will be updated. This update is not * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any * operation executed in the 3 hours that follows this update was indeed scheduled before this update. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - granted role must not be the `PUBLIC_ROLE` * * Emits a {RoleGranted} event. */ function grantRole(uint64 roleId, address account, uint32 executionDelay) external; /** * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has * no effect. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - revoked role must not be the `PUBLIC_ROLE` * * Emits a {RoleRevoked} event if the account had the role. */ function revokeRole(uint64 roleId, address account) external; /** * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in * the role this call has no effect. * * Requirements: * * - the caller must be `callerConfirmation`. * * Emits a {RoleRevoked} event if the account had the role. */ function renounceRole(uint64 roleId, address callerConfirmation) external; /** * @dev Change admin role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleAdminChanged} event */ function setRoleAdmin(uint64 roleId, uint64 admin) external; /** * @dev Change guardian role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGuardianChanged} event */ function setRoleGuardian(uint64 roleId, uint64 guardian) external; /** * @dev Update the delay for granting a `roleId`. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGrantDelayChanged} event. */ function setGrantDelay(uint64 roleId, uint32 newDelay) external; /** * @dev Set the role required to call functions identified by the `selectors` in the `target` contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetFunctionRoleUpdated} event per selector. */ function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external; /** * @dev Set the delay for changing the configuration of a given target contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetAdminDelayUpdated} event. */ function setTargetAdminDelay(address target, uint32 newDelay) external; /** * @dev Set the closed flag for a contract. * * Closing the manager itself won't disable access to admin methods to avoid locking the contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetClosed} event. */ function setTargetClosed(address target, bool closed) external; /** * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the * operation is not yet scheduled, has expired, was executed, or was canceled. */ function getSchedule(bytes32 id) external view returns (uint48); /** * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never * been scheduled. */ function getNonce(bytes32 id) external view returns (uint32); /** * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays * required for the caller. The special value zero will automatically set the earliest possible time. * * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}. * * Emits a {OperationScheduled} event. * * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target * contract if it is using standard Solidity ABI encoding. */ function schedule( address target, bytes calldata data, uint48 when ) external returns (bytes32 operationId, uint32 nonce); /** * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the * execution delay is 0. * * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the * operation wasn't previously scheduled (if the caller doesn't have an execution delay). * * Emits an {OperationExecuted} event only if the call was scheduled and delayed. */ function execute(address target, bytes calldata data) external payable returns (uint32); /** * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled * operation that is cancelled. * * Requirements: * * - the caller must be the proposer, a guardian of the targeted function, or a global admin * * Emits a {OperationCanceled} event. */ function cancel(address caller, address target, bytes calldata data) external returns (uint32); /** * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error. * * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager, * with all the verifications that it implies. * * Emit a {OperationExecuted} event. */ function consumeScheduledOp(address caller, bytes calldata data) external; /** * @dev Hashing function for delayed operations. */ function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32); /** * @dev Changes the authority of a target managed by this manager instance. * * Requirements: * * - the caller must be a global admin */ function updateAuthority(address target, address newAuthority) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol) pragma solidity ^0.8.20; /** * @dev Standard interface for permissioning originally defined in Dappsys. */ interface IAuthority { /** * @dev Returns true if the caller can invoke on a target the function identified by a function selector. */ function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol) pragma solidity ^0.8.20; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.22; import {IBeacon} from "../beacon/IBeacon.sol"; import {IERC1967} from "../../interfaces/IERC1967.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This library provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots. */ library ERC1967Utils { /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit IERC1967.Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit IERC1967.AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the ERC-1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit IERC1967.BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol) pragma solidity ^0.8.20; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback * function and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (proxy/beacon/BeaconProxy.sol) pragma solidity ^0.8.22; import {IBeacon} from "./IBeacon.sol"; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; /** * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}. * * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] so that it can be accessed externally. * * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust * the beacon to not upgrade the implementation maliciously. * * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in * an inconsistent state where the beacon storage slot does not match the beacon address. */ contract BeaconProxy is Proxy { // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call. address private immutable _beacon; /** * @dev Initializes the proxy with `beacon`. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity * constructor. * * Requirements: * * - `beacon` must be a contract with the interface {IBeacon}. * - If `data` is empty, `msg.value` must be zero. */ constructor(address beacon, bytes memory data) payable { ERC1967Utils.upgradeBeaconToAndCall(beacon, data); _beacon = beacon; } /** * @dev Returns the current implementation address of the associated beacon. */ function _implementation() internal view virtual override returns (address) { return IBeacon(_getBeacon()).implementation(); } /** * @dev Returns the beacon. */ function _getBeacon() internal view virtual returns (address) { return _beacon; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, bytes memory returndata) = recipient.call{value: amount}(""); if (!success) { _revert(returndata); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²56 and mod 2²56 - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²56 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²56. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²56 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²56. Now that denominator is an odd number, it has an inverse modulo 2²56 such // that denominator * inv = 1 mod 2²56. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 24. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 28 inverse *= 2 - denominator * inverse; // inverse mod 2¹6 inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 264 inverse *= 2 - denominator * inverse; // inverse mod 2¹²8 inverse *= 2 - denominator * inverse; // inverse mod 2²56 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²56. Since the preconditions guarantee that the outcome is // less than 2²56, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax = 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) = 1 mod p`. As a consequence, we have `a * a**(p-2) = 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `e_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) = sqrt(a) < 2**e`). We know that `e = 128` because `(2¹²8)² = 2²56` is // bigger than any uint256. // // By noticing that // `2**(e-1) = sqrt(a) < 2**e ? (2**(e-1))² = a < (2**e)² ? 2**(2*e-2) = a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) = sqrt(a) < 2**e = 2 * x_n`. This implies e_n = 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to e_n = 2**(e-2). // This is going to be our x_0 (and e_0) xn = (3 * xn) >> 1; // e_0 := | x_0 - sqrt(a) | = 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n4 + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n4 + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n4 - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // = 0 // Which proves that for all n = 1, sqrt(a) = x_n // // This gives us the proof of quadratic convergence of the sequence: // e_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | e_n² / (2 * x_n) | // = e_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // e_1 = e_0² / | (2 * x_0) | // = (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // = 2**(2*e-4) / (3 * 2**(e-1)) // = 2**(e-3) / 3 // = 2**(e-3-log2(3)) // = 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) = sqrt(a) = x_n: // e_{n+1} = e_n² / | (2 * x_n) | // = (2**(e-k))² / (2 * 2**(e-1)) // = 2**(2*e-2*k) / 2**e // = 2**(e-2*k) xn = (xn + a / xn) >> 1; // e_1 := | x_1 - sqrt(a) | = 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // e_2 := | x_2 - sqrt(a) | = 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // e_3 := | x_3 - sqrt(a) | = 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // e_4 := | x_4 - sqrt(a) | = 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // e_5 := | x_5 - sqrt(a) | = 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // e_6 := | x_6 - sqrt(a) | = 2**(e-144) -- general case with k = 72 // Because e = 128 (as discussed during the first estimation phase), we know have reached a precision // e_6 = 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // If upper 8 bits of 16-bit half set, add 8 to result r |= SafeCast.toUint((x >> r) > 0xff) << 3; // If upper 4 bits of 8-bit half set, add 4 to result r |= SafeCast.toUint((x >> r) > 0xf) << 2; // Shifts value right by the current result and use it as an index into this lookup table: // // | x (4 bits) | index | table[index] = MSB position | // |------------|---------|-----------------------------| // | 0000 | 0 | table[0] = 0 | // | 0001 | 1 | table[1] = 0 | // | 0010 | 2 | table[2] = 1 | // | 0011 | 3 | table[3] = 1 | // | 0100 | 4 | table[4] = 2 | // | 0101 | 5 | table[5] = 2 | // | 0110 | 6 | table[6] = 2 | // | 0111 | 7 | table[7] = 2 | // | 1000 | 8 | table[8] = 3 | // | 1001 | 9 | table[9] = 3 | // | 1010 | 10 | table[10] = 3 | // | 1011 | 11 | table[11] = 3 | // | 1100 | 12 | table[12] = 3 | // | 1101 | 13 | table[13] = 3 | // | 1110 | 14 | table[14] = 3 | // | 1111 | 15 | table[15] = 3 | // // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes. assembly ("memory-safe") { r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000)) } } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8 return (r >> 3) | SafeCast.toUint((x >> r) > 0xff); } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ? ? ? [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt( Delay self, uint48 timepoint ) private pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { (valueBefore, valueAfter, effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.22; import {IDiscountModel} from "./interfaces/IDiscountModel.sol"; import {IPrincipalToken} from "./interfaces/IPrincipalToken.sol"; import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; contract SpectraPriceOracle is OwnableUpgradeable { uint256 private constant SECONDS_PER_YEAR = 365 days; uint256 private UNIT; address public PT; uint256 public maturity; address public discountModel; // External discount model uint256 public initialImpliedAPY; uint8 private underlyingDecimals; uint256 private startTime; uint256[50] private __gap; event DiscountModelUpdated(address newModel); constructor() { _disableInitializers(); } function initialize( address _pt, address _discountModel, uint256 _initialImpliedAPY, address initOwner ) external initializer { __Ownable_init(initOwner); require(_pt != address(0), "zero address"); PT = _pt; address underlying = IPrincipalToken(PT).underlying(); underlyingDecimals = IERC20Metadata(underlying).decimals(); maturity = IPrincipalToken(PT).maturity(); discountModel = _discountModel; initialImpliedAPY = _initialImpliedAPY; UNIT = 10 ** IPrincipalToken(PT).decimals(); startTime = block.timestamp; IDiscountModel.Term memory term = IDiscountModel.Term({ startTimestamp: startTime, currentTimestamp: (block.timestamp > maturity) ? maturity : block.timestamp, expiryTimestamp: maturity }); uint256 futurePTValue = IPrincipalToken(PT).convertToUnderlying(UNIT); require(getPrice(futurePTValue, term) > 0, "price must be greater than 0"); } function latestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound) { IDiscountModel.Term memory term = IDiscountModel.Term({ startTimestamp: startTime, currentTimestamp: (block.timestamp > maturity) ? maturity : block.timestamp, expiryTimestamp: maturity }); uint256 futurePTValue = IPrincipalToken(PT).convertToUnderlying(UNIT); //Get the discount with the time left uint256 price = getPrice(futurePTValue, term); return (0, int256(price), 0, 0, 0); } function getPrice(uint256 futurePTValue, IDiscountModel.Term memory term) public view returns (uint256) { return IDiscountModel(discountModel).getPrice(initialImpliedAPY, futurePTValue, term); } /// @notice Update the discount model function setDiscountModel(address _newModel) external onlyOwner { require(_newModel != address(0), "zero discount model"); discountModel = _newModel; emit DiscountModelUpdated(_newModel); } /// @notice Get the decimals of the asset function decimals() external view returns (uint8) { return underlyingDecimals; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.22; interface IDiscountModel { struct Term { uint256 startTimestamp; uint256 currentTimestamp; uint256 expiryTimestamp; } /** * @notice Computes the price for a given principal token. * @dev This function can be implemented customly, so not all argumnets need to be used * * @param initialImpliedAPY The initial implied APY of the principal token (in 18 decimals). * @param futurePTValue The future value of the principal token at maturity. * @param term Time data for the term of the principal token. * @return price The computed price, expressed with futurePTValue's decimals precision. */ function getPrice( uint256 initialImpliedAPY, uint256 futurePTValue, Term memory term ) external pure returns (uint256 price); /** * @notice Returns a human-readable description of the discount model. * @return A string describing the discount model. */ function description() external pure returns (string memory); }
// SPDX-License-Identifier: pragma solidity ^0.8.22; interface IPrincipalToken { function getIBTRate() external view returns (uint256); function maturity() external view returns (uint256); function decimals() external view returns (uint8); function convertToUnderlying(uint256 principalAmount) external view returns (uint256); function underlying() external view returns (address); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.22; import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol"; import {IDiscountModel} from "../interfaces/IDiscountModel.sol"; /** * @title LinearDiscountModel * @notice This model calculates the price of a linear discount bond using the linear discount formula. */ contract LinearDiscountModel is IDiscountModel, OwnableUpgradeable { uint256 private constant SECONDS_PER_YEAR = 365 days; uint256 private constant UNIT = 1e18; constructor() { _disableInitializers(); } function initialize() external initializer {} /// @dev See IDiscountModel.description function description() external pure override returns (string memory) { return "Linear discount model: Discount decreases linearly over time."; } /// @dev See IDiscountModel.getPrice. function getPrice( uint256 initialImpliedAPY, uint256 futurePTValue, IDiscountModel.Term memory term ) external pure override returns (uint256) { uint256 timeLeft = term.expiryTimestamp - term.currentTimestamp; if (timeLeft == 0) { return futurePTValue; } uint256 duration = term.expiryTimestamp - term.startTimestamp; uint256 termAdjustedInitialImpliedAPY = (initialImpliedAPY * duration) / SECONDS_PER_YEAR; uint256 anchor = (futurePTValue * UNIT) / (UNIT + termAdjustedInitialImpliedAPY); uint256 drift = ((futurePTValue - anchor) * (term.currentTimestamp - term.startTimestamp)) / duration; uint256 price = anchor + drift; return price; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.22; import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol"; import {IDiscountModel} from "../interfaces/IDiscountModel.sol"; import {LogExpMath} from "../utils/LogExpMath.sol"; import {Math} from "openzeppelin-math/Math.sol"; /** * @title ZeroCouponDiscountModel * @notice This model calculates the price of a zero coupon bond using the zero coupon bond formula with compounded returns */ contract ZeroCouponDiscountModel is IDiscountModel, OwnableUpgradeable { using Math for uint256; uint256 private constant UNIT = 1e18; int256 private constant SECONDS_PER_YEAR = 365 days; constructor() { _disableInitializers(); } function initialize() external initializer {} /// @dev See IDiscountModel.description function description() external pure override returns (string memory) { return "Discount calculated using the zero coupon bond formula"; } /// @dev See IDiscountModel.getPrice. function getPrice( uint256 initialImpliedAPY, uint256 futurePTValue, IDiscountModel.Term memory term ) external pure override returns (uint256) { uint256 timeLeft = term.expiryTimestamp - term.currentTimestamp; if (timeLeft == 0) { return futurePTValue; } int256 t = int256(timeLeft * UNIT) / SECONDS_PER_YEAR; int256 unitInt = int256(UNIT); int256 base = unitInt + int256(initialImpliedAPY); int256 ratePerSecond = LogExpMath.ln(base); int256 denominator = LogExpMath.exp((ratePerSecond * t) / unitInt); int256 presentValue = (int256(futurePTValue) * unitInt) / denominator; return uint256(presentValue); } }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.8.0; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
{ "evmVersion": "shanghai", "libraries": {}, "metadata": { "appendCBOR": true, "bytecodeHash": "ipfs", "useLiteralContent": false }, "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [ "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/", "openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/", "openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/", "openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/", "openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/", "openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/", "openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/", "config/=lib/spectra-contracts-configs/script/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/", "spectra-contracts-configs/=lib/spectra-contracts-configs/" ], "viaIR": false }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"authority","type":"address"}],"name":"AccessManagedInvalidAuthority","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"uint32","name":"delay","type":"uint32"}],"name":"AccessManagedRequiredDelay","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"AccessManagedUnauthorized","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pt","type":"address"},{"indexed":true,"internalType":"address","name":"oracle","type":"address"},{"indexed":true,"internalType":"address","name":"discountModel","type":"address"}],"name":"OracleCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldBeacon","type":"address"},{"indexed":true,"internalType":"address","name":"newBeacon","type":"address"}],"name":"SpectraPriceOracleBeaconChanged","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_pt","type":"address"},{"internalType":"address","name":"_discountModel","type":"address"},{"internalType":"uint256","name":"initialImpliedAPY","type":"uint256"},{"internalType":"address","name":"initOwner","type":"address"}],"name":"createOracle","outputs":[{"internalType":"address","name":"oracle","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_initialAuthority","type":"address"},{"internalType":"address","name":"_spectraPriceOracleBeacon","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isConsumingScheduledOp","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_spectraPriceOracleBeacon","type":"address"}],"name":"setSpectraPriceOracleBeacon","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"spectraPriceOracleBeacon","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
608060405234801562000010575f80fd5b50620000216200002760201b60201c565b62000191565b5f620000386200012b60201b60201c565b9050805f0160089054906101000a900460ff161562000083576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b67ffffffffffffffff8016815f015f9054906101000a900467ffffffffffffffff1667ffffffffffffffff1614620001285767ffffffffffffffff815f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d267ffffffffffffffff6040516200011f919062000176565b60405180910390a15b50565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f67ffffffffffffffff82169050919050565b620001708162000152565b82525050565b5f6020820190506200018b5f83018462000165565b92915050565b611d8b806200019f5f395ff3fe608060405234801562000010575f80fd5b506004361062000086575f3560e01c80637a9e5e4b11620000615780637a9e5e4b14620001025780638fb360371462000122578063a7357a691462000144578063bf7e214f14620001645762000086565b8063485cc955146200008a57806367ac4e9814620000aa5780636fc04c5e14620000cc575b5f80fd5b620000a86004803603810190620000a2919062000d38565b62000186565b005b620000b46200041e565b604051620000c3919062000d8e565b60405180910390f35b620000ea6004803603810190620000e4919062000de1565b62000441565b604051620000f9919062000d8e565b60405180910390f35b6200012060048036038101906200011a919062000e50565b62000607565b005b6200012c620006fd565b6040516200013b919062000ebc565b60405180910390f35b6200016260048036038101906200015c919062000e50565b6200073a565b005b6200016e62000884565b6040516200017d919062000d8e565b60405180910390f35b5f62000191620008bb565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff16148015620001da5750825b90505f60018367ffffffffffffffff161480156200020e57505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156200021d575080155b1562000255576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315620002a3576001855f0160086101000a81548160ff0219169083151502179055505b620002ae87620008e2565b5f73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff16036200031f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620003169062000f5b565b60405180910390fd5b855f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508573ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3831562000415575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d260016040516200040c919062000fd8565b60405180910390a15b50505050505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f8073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff1603620004b3576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620004aa9062001041565b60405180910390fd5b5f63be20309460e01b86868686604051602401620004d5949392919062001072565b604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505090505f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681604051620005639062000cc5565b6200057092919062001151565b604051809103905ff0801580156200058a573d5f803e3d5ffd5b5091508473ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff168773ffffffffffffffffffffffffffffffffffffffff167f8b69ae2d925f933c6780984a3334f9475a74b2063a8a94f93c70fc0cc4f44d6c60405160405180910390a450949350505050565b5f62000612620008fa565b90506200061e62000884565b73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146200069057806040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000687919062000d8e565b60405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff163b03620006ee57816040517fc2f31e5e000000000000000000000000000000000000000000000000000000008152600401620006e5919062000d8e565b60405180910390fd5b620006f98262000901565b5050565b5f80620007096200098c565b9050805f0160149054906101000a900460ff166200072b575f60e01b62000734565b638fb3603760e01b5b91505090565b6200075862000748620008fa565b62000752620009b3565b620009bf565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603620007c9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620007c09062000f5b565b60405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3805f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b5f80620008906200098c565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b620008ec62000b1b565b620008f78162000b5e565b50565b5f33905090565b5f6200090c6200098c565b905081815f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055507f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad8260405162000980919062000d8e565b60405180910390a15050565b5f7ff3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00905090565b365f8036915091509091565b5f620009ca6200098c565b90505f8062000a06620009dc62000884565b873088885f90600492620009f3939291906200118b565b9062000a009190620011e1565b62000b76565b915091508162000b13575f8163ffffffff16111562000ad3576001835f0160146101000a81548160ff02191690831515021790555062000a4562000884565b73ffffffffffffffffffffffffffffffffffffffff166394c7d7ee8787876040518463ffffffff1660e01b815260040162000a839392919062001286565b5f604051808303815f87803b15801562000a9b575f80fd5b505af115801562000aae573d5f803e3d5ffd5b505050505f835f0160146101000a81548160ff02191690831515021790555062000b12565b856040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000b09919062000d8e565b60405180910390fd5b5b505050505050565b62000b2562000ca5565b62000b5c576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b62000b6862000b1b565b62000b738162000901565b50565b5f805f808773ffffffffffffffffffffffffffffffffffffffff1687878760405160240162000ba893929190620012ba565b60405160208183030381529060405263b700961360e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505060405162000bfc919062001335565b5f60405180830381855afa9150503d805f811462000c36576040519150601f19603f3d011682016040523d82523d5f602084013e62000c3b565b606091505b5091509150811562000c9a57604081511062000c75578080602001905181019062000c679190620013c5565b809450819550505062000c99565b602081511062000c98578080602001905181019062000c9591906200140a565b93505b5b5b505094509492505050565b5f62000cb0620008bb565b5f0160089054906101000a900460ff16905090565b61091b806200143b83390190565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f62000d028262000cd7565b9050919050565b62000d148162000cf6565b811462000d1f575f80fd5b50565b5f8135905062000d328162000d09565b92915050565b5f806040838503121562000d515762000d5062000cd3565b5b5f62000d608582860162000d22565b925050602062000d738582860162000d22565b9150509250929050565b62000d888162000cf6565b82525050565b5f60208201905062000da35f83018462000d7d565b92915050565b5f819050919050565b62000dbd8162000da9565b811462000dc8575f80fd5b50565b5f8135905062000ddb8162000db2565b92915050565b5f805f806080858703121562000dfc5762000dfb62000cd3565b5b5f62000e0b8782880162000d22565b945050602062000e1e8782880162000d22565b935050604062000e318782880162000dcb565b925050606062000e448782880162000d22565b91505092959194509250565b5f6020828403121562000e685762000e6762000cd3565b5b5f62000e778482850162000d22565b91505092915050565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b62000eb68162000e80565b82525050565b5f60208201905062000ed15f83018462000eab565b92915050565b5f82825260208201905092915050565b7f5370656374726150726963654f7261636c65426561636f6e2063616e6e6f74205f8201527f6265207a65726f00000000000000000000000000000000000000000000000000602082015250565b5f62000f4360278362000ed7565b915062000f508262000ee7565b604082019050919050565b5f6020820190508181035f83015262000f748162000f35565b9050919050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f62000fc062000fba62000fb48462000f7b565b62000f97565b62000f84565b9050919050565b62000fd28162000fa0565b82525050565b5f60208201905062000fed5f83018462000fc7565b92915050565b7f505420616464726573732063616e6e6f74206265207a65726f000000000000005f82015250565b5f6200102960198362000ed7565b9150620010368262000ff3565b602082019050919050565b5f6020820190508181035f8301526200105a816200101b565b9050919050565b6200106c8162000da9565b82525050565b5f608082019050620010875f83018762000d7d565b62001096602083018662000d7d565b620010a5604083018562001061565b620010b4606083018462000d7d565b95945050505050565b5f81519050919050565b5f82825260208201905092915050565b5f5b83811015620010f6578082015181840152602081019050620010d9565b5f8484015250505050565b5f601f19601f8301169050919050565b5f6200111d82620010bd565b620011298185620010c7565b93506200113b818560208601620010d7565b620011468162001101565b840191505092915050565b5f604082019050620011665f83018562000d7d565b81810360208301526200117a818462001111565b90509392505050565b5f80fd5b5f80fd5b5f8085851115620011a157620011a062001183565b5b83861115620011b557620011b462001187565b5b6001850283019150848603905094509492505050565b5f82905092915050565b5f82821b905092915050565b5f620011ee8383620011cb565b82620011fb813562000e80565b925060048210156200123e57620012397fffffffff0000000000000000000000000000000000000000000000000000000083600403600802620011d5565b831692505b505092915050565b828183375f83830152505050565b5f620012618385620010c7565b93506200127083858462001246565b6200127b8362001101565b840190509392505050565b5f6040820190506200129b5f83018662000d7d565b8181036020830152620012b081848662001254565b9050949350505050565b5f606082019050620012cf5f83018662000d7d565b620012de602083018562000d7d565b620012ed604083018462000eab565b949350505050565b5f81905092915050565b5f6200130b82620010bd565b620013178185620012f5565b935062001329818560208601620010d7565b80840191505092915050565b5f620013428284620012ff565b915081905092915050565b5f8115159050919050565b62001363816200134d565b81146200136e575f80fd5b50565b5f81519050620013818162001358565b92915050565b5f63ffffffff82169050919050565b620013a18162001387565b8114620013ac575f80fd5b50565b5f81519050620013bf8162001396565b92915050565b5f8060408385031215620013de57620013dd62000cd3565b5b5f620013ed8582860162001371565b92505060206200140085828601620013af565b9150509250929050565b5f6020828403121562001422576200142162000cd3565b5b5f620014318482850162001371565b9150509291505056fe60a060405260405161091b38038061091b8339818101604052810190610025919061065e565b610035828261007060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff16815250505050610765565b61007f8261016060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff167f1cf3b03a6cf19fa2baba4df148e9dcabedea7f8a5c07840e207e5c089be95d3e60405160405180910390a25f8151111561014d576101478273ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610117573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061013b91906106b8565b826102fb60201b60201c565b5061015c565b61015b61038160201b60201c565b5b5050565b5f8173ffffffffffffffffffffffffffffffffffffffff163b036101bb57806040517f64ced0ec0000000000000000000000000000000000000000000000000000000081526004016101b291906106f2565b60405180910390fd5b806101ed7fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d505f1b6103bd60201b60201c565b5f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f8173ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610276573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061029a91906106b8565b90505f8173ffffffffffffffffffffffffffffffffffffffff163b036102f757806040517f4c9c8ce30000000000000000000000000000000000000000000000000000000081526004016102ee91906106f2565b60405180910390fd5b5050565b60605f808473ffffffffffffffffffffffffffffffffffffffff1684604051610324919061074f565b5f60405180830381855af49150503d805f811461035c576040519150601f19603f3d011682016040523d82523d5f602084013e610361565b606091505b50915091506103778583836103c660201b60201c565b9250505092915050565b5f3411156103bb576040517fb398979f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f819050919050565b6060826103e1576103dc8261045960201b60201c565b610451565b5f825114801561040757505f8473ffffffffffffffffffffffffffffffffffffffff163b145b1561044957836040517f9996b31500000000000000000000000000000000000000000000000000000000815260040161044091906106f2565b60405180910390fd5b819050610452565b5b9392505050565b5f8151111561046b5780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6104d7826104ae565b9050919050565b6104e7816104cd565b81146104f1575f80fd5b50565b5f81519050610502816104de565b92915050565b5f80fd5b5f80fd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61055682610510565b810181811067ffffffffffffffff8211171561057557610574610520565b5b80604052505050565b5f61058761049d565b9050610593828261054d565b919050565b5f67ffffffffffffffff8211156105b2576105b1610520565b5b6105bb82610510565b9050602081019050919050565b5f5b838110156105e55780820151818401526020810190506105ca565b5f8484015250505050565b5f6106026105fd84610598565b61057e565b90508281526020810184848401111561061e5761061d61050c565b5b6106298482856105c8565b509392505050565b5f82601f83011261064557610644610508565b5b81516106558482602086016105f0565b91505092915050565b5f8060408385031215610674576106736104a6565b5b5f610681858286016104f4565b925050602083015167ffffffffffffffff8111156106a2576106a16104aa565b5b6106ae85828601610631565b9150509250929050565b5f602082840312156106cd576106cc6104a6565b5b5f6106da848285016104f4565b91505092915050565b6106ec816104cd565b82525050565b5f6020820190506107055f8301846106e3565b92915050565b5f81519050919050565b5f81905092915050565b5f6107298261070b565b6107338185610715565b93506107438185602086016105c8565b80840191505092915050565b5f61075a828461071f565b915081905092915050565b60805161019f61077c5f395f60bc015261019f5ff3fe608060405261000c61000e565b005b61001e610019610020565b61009a565b565b5f6100296100b9565b73ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610071573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610095919061013e565b905090565b365f80375f80365f845af43d5f803e805f81146100b5573d5ff35b3d5ffd5b5f7f0000000000000000000000000000000000000000000000000000000000000000905090565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61010d826100e4565b9050919050565b61011d81610103565b8114610127575f80fd5b50565b5f8151905061013881610114565b92915050565b5f60208284031215610153576101526100e0565b5b5f6101608482850161012a565b9150509291505056fea2646970667358221220a735dbe5abce740bb14e675ba1faab62822d25955b97303218ae011a82cff6a264736f6c63430008160033a264697066735822122051c2f6024d9d42d7e43926e836d69bd014164ae736fb19984634d6c4b445a5a364736f6c63430008160033
Deployed Bytecode
0x608060405234801562000010575f80fd5b506004361062000086575f3560e01c80637a9e5e4b11620000615780637a9e5e4b14620001025780638fb360371462000122578063a7357a691462000144578063bf7e214f14620001645762000086565b8063485cc955146200008a57806367ac4e9814620000aa5780636fc04c5e14620000cc575b5f80fd5b620000a86004803603810190620000a2919062000d38565b62000186565b005b620000b46200041e565b604051620000c3919062000d8e565b60405180910390f35b620000ea6004803603810190620000e4919062000de1565b62000441565b604051620000f9919062000d8e565b60405180910390f35b6200012060048036038101906200011a919062000e50565b62000607565b005b6200012c620006fd565b6040516200013b919062000ebc565b60405180910390f35b6200016260048036038101906200015c919062000e50565b6200073a565b005b6200016e62000884565b6040516200017d919062000d8e565b60405180910390f35b5f62000191620008bb565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff16148015620001da5750825b90505f60018367ffffffffffffffff161480156200020e57505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156200021d575080155b1562000255576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315620002a3576001855f0160086101000a81548160ff0219169083151502179055505b620002ae87620008e2565b5f73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff16036200031f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620003169062000f5b565b60405180910390fd5b855f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508573ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3831562000415575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d260016040516200040c919062000fd8565b60405180910390a15b50505050505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f8073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff1603620004b3576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620004aa9062001041565b60405180910390fd5b5f63be20309460e01b86868686604051602401620004d5949392919062001072565b604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505090505f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681604051620005639062000cc5565b6200057092919062001151565b604051809103905ff0801580156200058a573d5f803e3d5ffd5b5091508473ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff168773ffffffffffffffffffffffffffffffffffffffff167f8b69ae2d925f933c6780984a3334f9475a74b2063a8a94f93c70fc0cc4f44d6c60405160405180910390a450949350505050565b5f62000612620008fa565b90506200061e62000884565b73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146200069057806040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000687919062000d8e565b60405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff163b03620006ee57816040517fc2f31e5e000000000000000000000000000000000000000000000000000000008152600401620006e5919062000d8e565b60405180910390fd5b620006f98262000901565b5050565b5f80620007096200098c565b9050805f0160149054906101000a900460ff166200072b575f60e01b62000734565b638fb3603760e01b5b91505090565b6200075862000748620008fa565b62000752620009b3565b620009bf565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603620007c9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620007c09062000f5b565b60405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3805f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b5f80620008906200098c565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b620008ec62000b1b565b620008f78162000b5e565b50565b5f33905090565b5f6200090c6200098c565b905081815f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055507f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad8260405162000980919062000d8e565b60405180910390a15050565b5f7ff3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00905090565b365f8036915091509091565b5f620009ca6200098c565b90505f8062000a06620009dc62000884565b873088885f90600492620009f3939291906200118b565b9062000a009190620011e1565b62000b76565b915091508162000b13575f8163ffffffff16111562000ad3576001835f0160146101000a81548160ff02191690831515021790555062000a4562000884565b73ffffffffffffffffffffffffffffffffffffffff166394c7d7ee8787876040518463ffffffff1660e01b815260040162000a839392919062001286565b5f604051808303815f87803b15801562000a9b575f80fd5b505af115801562000aae573d5f803e3d5ffd5b505050505f835f0160146101000a81548160ff02191690831515021790555062000b12565b856040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000b09919062000d8e565b60405180910390fd5b5b505050505050565b62000b2562000ca5565b62000b5c576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b62000b6862000b1b565b62000b738162000901565b50565b5f805f808773ffffffffffffffffffffffffffffffffffffffff1687878760405160240162000ba893929190620012ba565b60405160208183030381529060405263b700961360e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505060405162000bfc919062001335565b5f60405180830381855afa9150503d805f811462000c36576040519150601f19603f3d011682016040523d82523d5f602084013e62000c3b565b606091505b5091509150811562000c9a57604081511062000c75578080602001905181019062000c679190620013c5565b809450819550505062000c99565b602081511062000c98578080602001905181019062000c9591906200140a565b93505b5b5b505094509492505050565b5f62000cb0620008bb565b5f0160089054906101000a900460ff16905090565b61091b806200143b83390190565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f62000d028262000cd7565b9050919050565b62000d148162000cf6565b811462000d1f575f80fd5b50565b5f8135905062000d328162000d09565b92915050565b5f806040838503121562000d515762000d5062000cd3565b5b5f62000d608582860162000d22565b925050602062000d738582860162000d22565b9150509250929050565b62000d888162000cf6565b82525050565b5f60208201905062000da35f83018462000d7d565b92915050565b5f819050919050565b62000dbd8162000da9565b811462000dc8575f80fd5b50565b5f8135905062000ddb8162000db2565b92915050565b5f805f806080858703121562000dfc5762000dfb62000cd3565b5b5f62000e0b8782880162000d22565b945050602062000e1e8782880162000d22565b935050604062000e318782880162000dcb565b925050606062000e448782880162000d22565b91505092959194509250565b5f6020828403121562000e685762000e6762000cd3565b5b5f62000e778482850162000d22565b91505092915050565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b62000eb68162000e80565b82525050565b5f60208201905062000ed15f83018462000eab565b92915050565b5f82825260208201905092915050565b7f5370656374726150726963654f7261636c65426561636f6e2063616e6e6f74205f8201527f6265207a65726f00000000000000000000000000000000000000000000000000602082015250565b5f62000f4360278362000ed7565b915062000f508262000ee7565b604082019050919050565b5f6020820190508181035f83015262000f748162000f35565b9050919050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f62000fc062000fba62000fb48462000f7b565b62000f97565b62000f84565b9050919050565b62000fd28162000fa0565b82525050565b5f60208201905062000fed5f83018462000fc7565b92915050565b7f505420616464726573732063616e6e6f74206265207a65726f000000000000005f82015250565b5f6200102960198362000ed7565b9150620010368262000ff3565b602082019050919050565b5f6020820190508181035f8301526200105a816200101b565b9050919050565b6200106c8162000da9565b82525050565b5f608082019050620010875f83018762000d7d565b62001096602083018662000d7d565b620010a5604083018562001061565b620010b4606083018462000d7d565b95945050505050565b5f81519050919050565b5f82825260208201905092915050565b5f5b83811015620010f6578082015181840152602081019050620010d9565b5f8484015250505050565b5f601f19601f8301169050919050565b5f6200111d82620010bd565b620011298185620010c7565b93506200113b818560208601620010d7565b620011468162001101565b840191505092915050565b5f604082019050620011665f83018562000d7d565b81810360208301526200117a818462001111565b90509392505050565b5f80fd5b5f80fd5b5f8085851115620011a157620011a062001183565b5b83861115620011b557620011b462001187565b5b6001850283019150848603905094509492505050565b5f82905092915050565b5f82821b905092915050565b5f620011ee8383620011cb565b82620011fb813562000e80565b925060048210156200123e57620012397fffffffff0000000000000000000000000000000000000000000000000000000083600403600802620011d5565b831692505b505092915050565b828183375f83830152505050565b5f620012618385620010c7565b93506200127083858462001246565b6200127b8362001101565b840190509392505050565b5f6040820190506200129b5f83018662000d7d565b8181036020830152620012b081848662001254565b9050949350505050565b5f606082019050620012cf5f83018662000d7d565b620012de602083018562000d7d565b620012ed604083018462000eab565b949350505050565b5f81905092915050565b5f6200130b82620010bd565b620013178185620012f5565b935062001329818560208601620010d7565b80840191505092915050565b5f620013428284620012ff565b915081905092915050565b5f8115159050919050565b62001363816200134d565b81146200136e575f80fd5b50565b5f81519050620013818162001358565b92915050565b5f63ffffffff82169050919050565b620013a18162001387565b8114620013ac575f80fd5b50565b5f81519050620013bf8162001396565b92915050565b5f8060408385031215620013de57620013dd62000cd3565b5b5f620013ed8582860162001371565b92505060206200140085828601620013af565b9150509250929050565b5f6020828403121562001422576200142162000cd3565b5b5f620014318482850162001371565b9150509291505056fe60a060405260405161091b38038061091b8339818101604052810190610025919061065e565b610035828261007060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff16815250505050610765565b61007f8261016060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff167f1cf3b03a6cf19fa2baba4df148e9dcabedea7f8a5c07840e207e5c089be95d3e60405160405180910390a25f8151111561014d576101478273ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610117573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061013b91906106b8565b826102fb60201b60201c565b5061015c565b61015b61038160201b60201c565b5b5050565b5f8173ffffffffffffffffffffffffffffffffffffffff163b036101bb57806040517f64ced0ec0000000000000000000000000000000000000000000000000000000081526004016101b291906106f2565b60405180910390fd5b806101ed7fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d505f1b6103bd60201b60201c565b5f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f8173ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610276573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061029a91906106b8565b90505f8173ffffffffffffffffffffffffffffffffffffffff163b036102f757806040517f4c9c8ce30000000000000000000000000000000000000000000000000000000081526004016102ee91906106f2565b60405180910390fd5b5050565b60605f808473ffffffffffffffffffffffffffffffffffffffff1684604051610324919061074f565b5f60405180830381855af49150503d805f811461035c576040519150601f19603f3d011682016040523d82523d5f602084013e610361565b606091505b50915091506103778583836103c660201b60201c565b9250505092915050565b5f3411156103bb576040517fb398979f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f819050919050565b6060826103e1576103dc8261045960201b60201c565b610451565b5f825114801561040757505f8473ffffffffffffffffffffffffffffffffffffffff163b145b1561044957836040517f9996b31500000000000000000000000000000000000000000000000000000000815260040161044091906106f2565b60405180910390fd5b819050610452565b5b9392505050565b5f8151111561046b5780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6104d7826104ae565b9050919050565b6104e7816104cd565b81146104f1575f80fd5b50565b5f81519050610502816104de565b92915050565b5f80fd5b5f80fd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61055682610510565b810181811067ffffffffffffffff8211171561057557610574610520565b5b80604052505050565b5f61058761049d565b9050610593828261054d565b919050565b5f67ffffffffffffffff8211156105b2576105b1610520565b5b6105bb82610510565b9050602081019050919050565b5f5b838110156105e55780820151818401526020810190506105ca565b5f8484015250505050565b5f6106026105fd84610598565b61057e565b90508281526020810184848401111561061e5761061d61050c565b5b6106298482856105c8565b509392505050565b5f82601f83011261064557610644610508565b5b81516106558482602086016105f0565b91505092915050565b5f8060408385031215610674576106736104a6565b5b5f610681858286016104f4565b925050602083015167ffffffffffffffff8111156106a2576106a16104aa565b5b6106ae85828601610631565b9150509250929050565b5f602082840312156106cd576106cc6104a6565b5b5f6106da848285016104f4565b91505092915050565b6106ec816104cd565b82525050565b5f6020820190506107055f8301846106e3565b92915050565b5f81519050919050565b5f81905092915050565b5f6107298261070b565b6107338185610715565b93506107438185602086016105c8565b80840191505092915050565b5f61075a828461071f565b915081905092915050565b60805161019f61077c5f395f60bc015261019f5ff3fe608060405261000c61000e565b005b61001e610019610020565b61009a565b565b5f6100296100b9565b73ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610071573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610095919061013e565b905090565b365f80375f80365f845af43d5f803e805f81146100b5573d5ff35b3d5ffd5b5f7f0000000000000000000000000000000000000000000000000000000000000000905090565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61010d826100e4565b9050919050565b61011d81610103565b8114610127575f80fd5b50565b5f8151905061013881610114565b92915050565b5f60208284031215610153576101526100e0565b5b5f6101608482850161012a565b9150509291505056fea2646970667358221220a735dbe5abce740bb14e675ba1faab62822d25955b97303218ae011a82cff6a264736f6c63430008160033a264697066735822122051c2f6024d9d42d7e43926e836d69bd014164ae736fb19984634d6c4b445a5a364736f6c63430008160033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.