ETH Price: $4,512.30 (+0.56%)

Contract

0x765883c6Be92eC43b319d0886F3504E4fA81CCe1

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SpectraPriceOracleFactory

Compiler Version
v0.8.22+commit.4fc1097e

Optimization Enabled:
No with 200 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.22;

import "openzeppelin-contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol";
import "openzeppelin-contracts/proxy/beacon/BeaconProxy.sol";
import {SpectraPriceOracle} from "./SpectraPriceOracle.sol";
import {ZeroCouponDiscountModel} from "./models/OracleZCBModel.sol";
import {LinearDiscountModel} from "./models/OracleLinearModel.sol";

contract SpectraPriceOracleFactory is AccessManagedUpgradeable {
    address public spectraPriceOracleBeacon;

    /// @notice Event emitted when a new Oracle is deployed.
    event OracleCreated(address indexed pt, address indexed oracle, address indexed discountModel);
    event SpectraPriceOracleBeaconChanged(address indexed oldBeacon, address indexed newBeacon);

    /**
     * @notice Constructor of the contract
     */
    constructor() {
        _disableInitializers(); // using this so that the deployed logic contract later cannot be initialized.
    }

    /**
     * @notice Initializer of the contract
     * @param _initialAuthority The address of the access manager.
     */
    function initialize(address _initialAuthority, address _spectraPriceOracleBeacon) external initializer {
        __AccessManaged_init(_initialAuthority);
        require(_spectraPriceOracleBeacon != address(0), "SpectraPriceOracleBeacon cannot be zero");
        spectraPriceOracleBeacon = _spectraPriceOracleBeacon;
        emit SpectraPriceOracleBeaconChanged(address(0), _spectraPriceOracleBeacon);
    }

    function setSpectraPriceOracleBeacon(address _spectraPriceOracleBeacon) external restricted {
        require(_spectraPriceOracleBeacon != address(0), "SpectraPriceOracleBeacon cannot be zero");
        emit SpectraPriceOracleBeaconChanged(spectraPriceOracleBeacon, _spectraPriceOracleBeacon);
        spectraPriceOracleBeacon = _spectraPriceOracleBeacon;
    }

    /**
     * @dev Deploys a new `SpectraOracle` for a given PT.
     * @param _pt The address of the Principal Token (PT).
     * @param _discountModel The discount model address.
     * @return oracle The address of the newly deployed Oracle.
     */
    function createOracle(
        address _pt,
        address _discountModel,
        uint256 initialImpliedAPY,
        address initOwner
    ) external returns (address oracle) {
        require(_pt != address(0), "PT address cannot be zero");

        bytes memory _data = abi.encodeWithSelector(
            SpectraPriceOracle(address(0)).initialize.selector,
            _pt,
            _discountModel,
            initialImpliedAPY,
            initOwner
        );
        // Deploy a new oracle contract
        oracle = address(new BeaconProxy(spectraPriceOracleBeacon, _data));

        emit OracleCreated(_pt, oracle, _discountModel);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/manager/AccessManaged.sol)

pragma solidity ^0.8.20;

import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol";
import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol";
import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol";
import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
 * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
 * implementing a policy that allows certain callers to access certain functions.
 *
 * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
 * functions, and ideally only used in `external` functions. See {restricted}.
 */
abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged {
    /// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged
    struct AccessManagedStorage {
        address _authority;

        bool _consumingSchedule;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00;

    function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) {
        assembly {
            $.slot := AccessManagedStorageLocation
        }
    }

    /**
     * @dev Initializes the contract connected to an initial authority.
     */
    function __AccessManaged_init(address initialAuthority) internal onlyInitializing {
        __AccessManaged_init_unchained(initialAuthority);
    }

    function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing {
        _setAuthority(initialAuthority);
    }

    /**
     * @dev Restricts access to a function as defined by the connected Authority for this contract and the
     * caller and selector of the function that entered the contract.
     *
     * [IMPORTANT]
     * ====
     * In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
     * functions that are used as external entry points and are not called internally. Unless you know what you're
     * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
     * implications! This is because the permissions are determined by the function that entered the contract, i.e. the
     * function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
     * ====
     *
     * [WARNING]
     * ====
     * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
     * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
     * functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata
     * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
     * if no calldata is provided. (See {_checkCanCall}).
     *
     * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
     * ====
     */
    modifier restricted() {
        _checkCanCall(_msgSender(), _msgData());
        _;
    }

    /// @inheritdoc IAccessManaged
    function authority() public view virtual returns (address) {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        return $._authority;
    }

    /// @inheritdoc IAccessManaged
    function setAuthority(address newAuthority) public virtual {
        address caller = _msgSender();
        if (caller != authority()) {
            revert AccessManagedUnauthorized(caller);
        }
        if (newAuthority.code.length == 0) {
            revert AccessManagedInvalidAuthority(newAuthority);
        }
        _setAuthority(newAuthority);
    }

    /// @inheritdoc IAccessManaged
    function isConsumingScheduledOp() public view returns (bytes4) {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
    }

    /**
     * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
     * permissions set by the current authority.
     */
    function _setAuthority(address newAuthority) internal virtual {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        $._authority = newAuthority;
        emit AuthorityUpdated(newAuthority);
    }

    /**
     * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
     * is less than 4 bytes long.
     */
    function _checkCanCall(address caller, bytes calldata data) internal virtual {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
            authority(),
            caller,
            address(this),
            bytes4(data[0:4])
        );
        if (!immediate) {
            if (delay > 0) {
                $._consumingSchedule = true;
                IAccessManager(authority()).consumeScheduledOp(caller, data);
                $._consumingSchedule = false;
            } else {
                revert AccessManagedUnauthorized(caller);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 6 of 29 : AuthorityUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol)

pragma solidity ^0.8.20;

import {IAuthority} from "./IAuthority.sol";

library AuthorityUtils {
    /**
     * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
     * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
     * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
     */
    function canCallWithDelay(
        address authority,
        address caller,
        address target,
        bytes4 selector
    ) internal view returns (bool immediate, uint32 delay) {
        (bool success, bytes memory data) = authority.staticcall(
            abi.encodeCall(IAuthority.canCall, (caller, target, selector))
        );
        if (success) {
            if (data.length >= 0x40) {
                (immediate, delay) = abi.decode(data, (bool, uint32));
            } else if (data.length >= 0x20) {
                immediate = abi.decode(data, (bool));
            }
        }
        return (immediate, delay);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)

pragma solidity ^0.8.20;

interface IAccessManaged {
    /**
     * @dev Authority that manages this contract was updated.
     */
    event AuthorityUpdated(address authority);

    error AccessManagedUnauthorized(address caller);
    error AccessManagedRequiredDelay(address caller, uint32 delay);
    error AccessManagedInvalidAuthority(address authority);

    /**
     * @dev Returns the current authority.
     */
    function authority() external view returns (address);

    /**
     * @dev Transfers control to a new authority. The caller must be the current authority.
     */
    function setAuthority(address) external;

    /**
     * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
     * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
     * attacker controlled calls.
     */
    function isConsumingScheduledOp() external view returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/manager/IAccessManager.sol)

pragma solidity ^0.8.20;

import {Time} from "../../utils/types/Time.sol";

interface IAccessManager {
    /**
     * @dev A delayed operation was scheduled.
     */
    event OperationScheduled(
        bytes32 indexed operationId,
        uint32 indexed nonce,
        uint48 schedule,
        address caller,
        address target,
        bytes data
    );

    /**
     * @dev A scheduled operation was executed.
     */
    event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);

    /**
     * @dev A scheduled operation was canceled.
     */
    event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);

    /**
     * @dev Informational labelling for a roleId.
     */
    event RoleLabel(uint64 indexed roleId, string label);

    /**
     * @dev Emitted when `account` is granted `roleId`.
     *
     * NOTE: The meaning of the `since` argument depends on the `newMember` argument.
     * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
     * otherwise it indicates the execution delay for this account and roleId is updated.
     */
    event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);

    /**
     * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
     */
    event RoleRevoked(uint64 indexed roleId, address indexed account);

    /**
     * @dev Role acting as admin over a given `roleId` is updated.
     */
    event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);

    /**
     * @dev Role acting as guardian over a given `roleId` is updated.
     */
    event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);

    /**
     * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
     */
    event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);

    /**
     * @dev Target mode is updated (true = closed, false = open).
     */
    event TargetClosed(address indexed target, bool closed);

    /**
     * @dev Role required to invoke `selector` on `target` is updated to `roleId`.
     */
    event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);

    /**
     * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
     */
    event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);

    error AccessManagerAlreadyScheduled(bytes32 operationId);
    error AccessManagerNotScheduled(bytes32 operationId);
    error AccessManagerNotReady(bytes32 operationId);
    error AccessManagerExpired(bytes32 operationId);
    error AccessManagerLockedRole(uint64 roleId);
    error AccessManagerBadConfirmation();
    error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
    error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
    error AccessManagerUnauthorizedConsume(address target);
    error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
    error AccessManagerInvalidInitialAdmin(address initialAdmin);

    /**
     * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
     * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
     * & {execute} workflow.
     *
     * This function is usually called by the targeted contract to control immediate execution of restricted functions.
     * Therefore we only return true if the call can be performed without any delay. If the call is subject to a
     * previously set delay (not zero), then the function should return false and the caller should schedule the operation
     * for future execution.
     *
     * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
     * the operation can be executed if and only if delay is greater than 0.
     *
     * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
     * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
     * to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
     *
     * NOTE: This function does not report the permissions of the admin functions in the manager itself. These are defined by the
     * {AccessManager} documentation.
     */
    function canCall(
        address caller,
        address target,
        bytes4 selector
    ) external view returns (bool allowed, uint32 delay);

    /**
     * @dev Expiration delay for scheduled proposals. Defaults to 1 week.
     *
     * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
     * disabling any scheduling usage.
     */
    function expiration() external view returns (uint32);

    /**
     * @dev Minimum setback for all delay updates, with the exception of execution delays. It
     * can be increased without setback (and reset via {revokeRole} in the case event of an
     * accidental increase). Defaults to 5 days.
     */
    function minSetback() external view returns (uint32);

    /**
     * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
     *
     * NOTE: When the manager itself is closed, admin functions are still accessible to avoid locking the contract.
     */
    function isTargetClosed(address target) external view returns (bool);

    /**
     * @dev Get the role required to call a function.
     */
    function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);

    /**
     * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
     */
    function getTargetAdminDelay(address target) external view returns (uint32);

    /**
     * @dev Get the id of the role that acts as an admin for the given role.
     *
     * The admin permission is required to grant the role, revoke the role and update the execution delay to execute
     * an operation that is restricted to this role.
     */
    function getRoleAdmin(uint64 roleId) external view returns (uint64);

    /**
     * @dev Get the role that acts as a guardian for a given role.
     *
     * The guardian permission allows canceling operations that have been scheduled under the role.
     */
    function getRoleGuardian(uint64 roleId) external view returns (uint64);

    /**
     * @dev Get the role current grant delay.
     *
     * Its value may change at any point without an event emitted following a call to {setGrantDelay}.
     * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
     */
    function getRoleGrantDelay(uint64 roleId) external view returns (uint32);

    /**
     * @dev Get the access details for a given account for a given role. These details include the timepoint at which
     * membership becomes active, and the delay applied to all operation by this user that requires this permission
     * level.
     *
     * Returns:
     * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
     * [1] Current execution delay for the account.
     * [2] Pending execution delay for the account.
     * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
     */
    function getAccess(
        uint64 roleId,
        address account
    ) external view returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect);

    /**
     * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
     * permission might be associated with an execution delay. {getAccess} can provide more details.
     */
    function hasRole(uint64 roleId, address account) external view returns (bool isMember, uint32 executionDelay);

    /**
     * @dev Give a label to a role, for improved role discoverability by UIs.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleLabel} event.
     */
    function labelRole(uint64 roleId, string calldata label) external;

    /**
     * @dev Add `account` to `roleId`, or change its execution delay.
     *
     * This gives the account the authorization to call any function that is restricted to this role. An optional
     * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
     * that is restricted to members of this role. The user will only be able to execute the operation after the delay has
     * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
     *
     * If the account has already been granted this role, the execution delay will be updated. This update is not
     * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
     * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
     * operation executed in the 3 hours that follows this update was indeed scheduled before this update.
     *
     * Requirements:
     *
     * - the caller must be an admin for the role (see {getRoleAdmin})
     * - granted role must not be the `PUBLIC_ROLE`
     *
     * Emits a {RoleGranted} event.
     */
    function grantRole(uint64 roleId, address account, uint32 executionDelay) external;

    /**
     * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
     * no effect.
     *
     * Requirements:
     *
     * - the caller must be an admin for the role (see {getRoleAdmin})
     * - revoked role must not be the `PUBLIC_ROLE`
     *
     * Emits a {RoleRevoked} event if the account had the role.
     */
    function revokeRole(uint64 roleId, address account) external;

    /**
     * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
     * the role this call has no effect.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * Emits a {RoleRevoked} event if the account had the role.
     */
    function renounceRole(uint64 roleId, address callerConfirmation) external;

    /**
     * @dev Change admin role for a given role.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleAdminChanged} event
     */
    function setRoleAdmin(uint64 roleId, uint64 admin) external;

    /**
     * @dev Change guardian role for a given role.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleGuardianChanged} event
     */
    function setRoleGuardian(uint64 roleId, uint64 guardian) external;

    /**
     * @dev Update the delay for granting a `roleId`.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleGrantDelayChanged} event.
     */
    function setGrantDelay(uint64 roleId, uint32 newDelay) external;

    /**
     * @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetFunctionRoleUpdated} event per selector.
     */
    function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;

    /**
     * @dev Set the delay for changing the configuration of a given target contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetAdminDelayUpdated} event.
     */
    function setTargetAdminDelay(address target, uint32 newDelay) external;

    /**
     * @dev Set the closed flag for a contract.
     *
     * Closing the manager itself won't disable access to admin methods to avoid locking the contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetClosed} event.
     */
    function setTargetClosed(address target, bool closed) external;

    /**
     * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
     * operation is not yet scheduled, has expired, was executed, or was canceled.
     */
    function getSchedule(bytes32 id) external view returns (uint48);

    /**
     * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
     * been scheduled.
     */
    function getNonce(bytes32 id) external view returns (uint32);

    /**
     * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
     * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
     * required for the caller. The special value zero will automatically set the earliest possible time.
     *
     * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
     * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
     * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
     *
     * Emits a {OperationScheduled} event.
     *
     * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
     * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
     * contract if it is using standard Solidity ABI encoding.
     */
    function schedule(
        address target,
        bytes calldata data,
        uint48 when
    ) external returns (bytes32 operationId, uint32 nonce);

    /**
     * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
     * execution delay is 0.
     *
     * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
     * operation wasn't previously scheduled (if the caller doesn't have an execution delay).
     *
     * Emits an {OperationExecuted} event only if the call was scheduled and delayed.
     */
    function execute(address target, bytes calldata data) external payable returns (uint32);

    /**
     * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
     * operation that is cancelled.
     *
     * Requirements:
     *
     * - the caller must be the proposer, a guardian of the targeted function, or a global admin
     *
     * Emits a {OperationCanceled} event.
     */
    function cancel(address caller, address target, bytes calldata data) external returns (uint32);

    /**
     * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
     * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
     *
     * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
     * with all the verifications that it implies.
     *
     * Emit a {OperationExecuted} event.
     */
    function consumeScheduledOp(address caller, bytes calldata data) external;

    /**
     * @dev Hashing function for delayed operations.
     */
    function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);

    /**
     * @dev Changes the authority of a target managed by this manager instance.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     */
    function updateAuthority(address target, address newAuthority) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard interface for permissioning originally defined in Dappsys.
 */
interface IAuthority {
    /**
     * @dev Returns true if the caller can invoke on a target the function identified by a function selector.
     */
    function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
}

File 10 of 29 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.22;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/beacon/BeaconProxy.sol)

pragma solidity ^0.8.22;

import {IBeacon} from "./IBeacon.sol";
import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";

/**
 * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
 *
 * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an
 * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] so that it can be accessed externally.
 *
 * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust
 * the beacon to not upgrade the implementation maliciously.
 *
 * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in
 * an inconsistent state where the beacon storage slot does not match the beacon address.
 */
contract BeaconProxy is Proxy {
    // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call.
    address private immutable _beacon;

    /**
     * @dev Initializes the proxy with `beacon`.
     *
     * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
     * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
     * constructor.
     *
     * Requirements:
     *
     * - `beacon` must be a contract with the interface {IBeacon}.
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address beacon, bytes memory data) payable {
        ERC1967Utils.upgradeBeaconToAndCall(beacon, data);
        _beacon = beacon;
    }

    /**
     * @dev Returns the current implementation address of the associated beacon.
     */
    function _implementation() internal view virtual override returns (address) {
        return IBeacon(_getBeacon()).implementation();
    }

    /**
     * @dev Returns the beacon.
     */
    function _getBeacon() internal view virtual returns (address) {
        return _beacon;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

File 18 of 29 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²56 and mod 2²56 - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²56 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²56. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²56 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²56. Now that denominator is an odd number, it has an inverse modulo 2²56 such
            // that denominator * inv = 1 mod 2²56. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 24.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 28
            inverse *= 2 - denominator * inverse; // inverse mod 2¹6
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 264
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²8
            inverse *= 2 - denominator * inverse; // inverse mod 2²56

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²56. Since the preconditions guarantee that the outcome is
            // less than 2²56, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax = 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) = 1 mod p`. As a consequence, we have `a * a**(p-2) = 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `e_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) = sqrt(a) < 2**e`). We know that `e = 128` because `(2¹²8)² = 2²56` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) = sqrt(a) < 2**e ? (2**(e-1))² = a < (2**e)² ? 2**(2*e-2) = a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) = sqrt(a) < 2**e = 2 * x_n`. This implies e_n = 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to e_n = 2**(e-2).
            // This is going to be our x_0 (and e_0)
            xn = (3 * xn) >> 1; // e_0 := | x_0 - sqrt(a) | = 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n4 + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n4 + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n4 - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              = 0
            // Which proves that for all n = 1, sqrt(a) = x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // e_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | e_n² / (2 * x_n) |
            //         = e_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // e_1 = e_0² / | (2 * x_0) |
            //     = (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     = 2**(2*e-4) / (3 * 2**(e-1))
            //     = 2**(e-3) / 3
            //     = 2**(e-3-log2(3))
            //     = 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) = sqrt(a) = x_n:
            // e_{n+1} = e_n² / | (2 * x_n) |
            //         = (2**(e-k))² / (2 * 2**(e-1))
            //         = 2**(2*e-2*k) / 2**e
            //         = 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // e_1 := | x_1 - sqrt(a) | = 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // e_2 := | x_2 - sqrt(a) | = 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // e_3 := | x_3 - sqrt(a) | = 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // e_4 := | x_4 - sqrt(a) | = 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // e_5 := | x_5 - sqrt(a) | = 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // e_6 := | x_6 - sqrt(a) | = 2**(e-144)  -- general case with k = 72

            // Because e = 128 (as discussed during the first estimation phase), we know have reached a precision
            // e_6 = 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 22 of 29 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/types/Time.sol)

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";

/**
 * @dev This library provides helpers for manipulating time-related objects.
 *
 * It uses the following types:
 * - `uint48` for timepoints
 * - `uint32` for durations
 *
 * While the library doesn't provide specific types for timepoints and duration, it does provide:
 * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
 * - additional helper functions
 */
library Time {
    using Time for *;

    /**
     * @dev Get the block timestamp as a Timepoint.
     */
    function timestamp() internal view returns (uint48) {
        return SafeCast.toUint48(block.timestamp);
    }

    /**
     * @dev Get the block number as a Timepoint.
     */
    function blockNumber() internal view returns (uint48) {
        return SafeCast.toUint48(block.number);
    }

    // ==================================================== Delay =====================================================
    /**
     * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
     * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
     * This allows updating the delay applied to some operation while keeping some guarantees.
     *
     * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
     * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
     * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
     * still apply for some time.
     *
     *
     * The `Delay` type is 112 bits long, and packs the following:
     *
     * ```
     *   | [uint48]: effect date (timepoint)
     *   |           | [uint32]: value before (duration)
     *   ?           ?       ? [uint32]: value after (duration)
     * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
     * ```
     *
     * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
     * supported.
     */
    type Delay is uint112;

    /**
     * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
     */
    function toDelay(uint32 duration) internal pure returns (Delay) {
        return Delay.wrap(duration);
    }

    /**
     * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
     * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
     */
    function _getFullAt(
        Delay self,
        uint48 timepoint
    ) private pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        (valueBefore, valueAfter, effect) = self.unpack();
        return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
    }

    /**
     * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
     * effect timepoint is 0, then the pending value should not be considered.
     */
    function getFull(Delay self) internal view returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        return _getFullAt(self, timestamp());
    }

    /**
     * @dev Get the current value.
     */
    function get(Delay self) internal view returns (uint32) {
        (uint32 delay, , ) = self.getFull();
        return delay;
    }

    /**
     * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
     * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
     * new delay becomes effective.
     */
    function withUpdate(
        Delay self,
        uint32 newValue,
        uint32 minSetback
    ) internal view returns (Delay updatedDelay, uint48 effect) {
        uint32 value = self.get();
        uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
        effect = timestamp() + setback;
        return (pack(value, newValue, effect), effect);
    }

    /**
     * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
     */
    function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        uint112 raw = Delay.unwrap(self);

        valueAfter = uint32(raw);
        valueBefore = uint32(raw >> 32);
        effect = uint48(raw >> 64);

        return (valueBefore, valueAfter, effect);
    }

    /**
     * @dev pack the components into a Delay object.
     */
    function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
        return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.22;

import {IDiscountModel} from "./interfaces/IDiscountModel.sol";
import {IPrincipalToken} from "./interfaces/IPrincipalToken.sol";
import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

contract SpectraPriceOracle is OwnableUpgradeable {
    uint256 private constant SECONDS_PER_YEAR = 365 days;
    uint256 private UNIT;
    address public PT;
    uint256 public maturity;
    address public discountModel; // External discount model
    uint256 public initialImpliedAPY;
    uint8 private underlyingDecimals;
    uint256 private startTime;

    uint256[50] private __gap;

    event DiscountModelUpdated(address newModel);

    constructor() {
        _disableInitializers();
    }

    function initialize(
        address _pt,
        address _discountModel,
        uint256 _initialImpliedAPY,
        address initOwner
    ) external initializer {
        __Ownable_init(initOwner);
        require(_pt != address(0), "zero address");
        PT = _pt;
        address underlying = IPrincipalToken(PT).underlying();
        underlyingDecimals = IERC20Metadata(underlying).decimals();
        maturity = IPrincipalToken(PT).maturity();
        discountModel = _discountModel;
        initialImpliedAPY = _initialImpliedAPY;
        UNIT = 10 ** IPrincipalToken(PT).decimals();
        startTime = block.timestamp;
        IDiscountModel.Term memory term = IDiscountModel.Term({
            startTimestamp: startTime,
            currentTimestamp: (block.timestamp > maturity) ? maturity : block.timestamp,
            expiryTimestamp: maturity
        });
        uint256 futurePTValue = IPrincipalToken(PT).convertToUnderlying(UNIT);
        require(getPrice(futurePTValue, term) > 0, "price must be greater than 0");
    }

    function latestRoundData()
        external
        view
        returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound)
    {
        IDiscountModel.Term memory term = IDiscountModel.Term({
            startTimestamp: startTime,
            currentTimestamp: (block.timestamp > maturity) ? maturity : block.timestamp,
            expiryTimestamp: maturity
        });

        uint256 futurePTValue = IPrincipalToken(PT).convertToUnderlying(UNIT);
        //Get the discount with the time left
        uint256 price = getPrice(futurePTValue, term);

        return (0, int256(price), 0, 0, 0);
    }

    function getPrice(uint256 futurePTValue, IDiscountModel.Term memory term) public view returns (uint256) {
        return IDiscountModel(discountModel).getPrice(initialImpliedAPY, futurePTValue, term);
    }

    /// @notice Update the discount model
    function setDiscountModel(address _newModel) external onlyOwner {
        require(_newModel != address(0), "zero discount model");
        discountModel = _newModel;
        emit DiscountModelUpdated(_newModel);
    }

    /// @notice Get the decimals of the asset
    function decimals() external view returns (uint8) {
        return underlyingDecimals;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.22;

interface IDiscountModel {
    struct Term {
        uint256 startTimestamp;
        uint256 currentTimestamp;
        uint256 expiryTimestamp;
    }
    /**
     * @notice Computes the price for a given principal token.
     * @dev This function can be implemented customly, so not all argumnets need to be used
     *
     * @param initialImpliedAPY The initial implied APY of the principal token (in 18 decimals).
     * @param futurePTValue The future value of the principal token at maturity.
     * @param term Time data for the term of the principal token.
     * @return price The computed price, expressed with futurePTValue's decimals precision.
     */
    function getPrice(
        uint256 initialImpliedAPY,
        uint256 futurePTValue,
        Term memory term
    ) external pure returns (uint256 price);

    /**
     * @notice Returns a human-readable description of the discount model.
     * @return A string describing the discount model.
     */
    function description() external pure returns (string memory);
}

// SPDX-License-Identifier:
pragma solidity ^0.8.22;

interface IPrincipalToken {
    function getIBTRate() external view returns (uint256);
    function maturity() external view returns (uint256);
    function decimals() external view returns (uint8);
    function convertToUnderlying(uint256 principalAmount) external view returns (uint256);
    function underlying() external view returns (address);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.22;

import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol";
import {IDiscountModel} from "../interfaces/IDiscountModel.sol";

/**
 * @title LinearDiscountModel
 * @notice This model calculates the price of a linear discount bond using the linear discount formula.
 */
contract LinearDiscountModel is IDiscountModel, OwnableUpgradeable {
    uint256 private constant SECONDS_PER_YEAR = 365 days;
    uint256 private constant UNIT = 1e18;
    constructor() {
        _disableInitializers();
    }

    function initialize() external initializer {}

    /// @dev See IDiscountModel.description

    function description() external pure override returns (string memory) {
        return "Linear discount model: Discount decreases linearly over time.";
    }

    /// @dev See IDiscountModel.getPrice.
    function getPrice(
        uint256 initialImpliedAPY,
        uint256 futurePTValue,
        IDiscountModel.Term memory term
    ) external pure override returns (uint256) {
        uint256 timeLeft = term.expiryTimestamp - term.currentTimestamp;

        if (timeLeft == 0) {
            return futurePTValue;
        }

        uint256 duration = term.expiryTimestamp - term.startTimestamp;
        uint256 termAdjustedInitialImpliedAPY = (initialImpliedAPY * duration) / SECONDS_PER_YEAR;
        uint256 anchor = (futurePTValue * UNIT) / (UNIT + termAdjustedInitialImpliedAPY);
        uint256 drift = ((futurePTValue - anchor) * (term.currentTimestamp - term.startTimestamp)) / duration;
        uint256 price = anchor + drift;

        return price;
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.22;

import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol";
import {IDiscountModel} from "../interfaces/IDiscountModel.sol";
import {LogExpMath} from "../utils/LogExpMath.sol";
import {Math} from "openzeppelin-math/Math.sol";

/**
 * @title ZeroCouponDiscountModel
 * @notice This model calculates the price of a zero coupon bond using the zero coupon bond formula with compounded returns
 */
contract ZeroCouponDiscountModel is IDiscountModel, OwnableUpgradeable {
    using Math for uint256;
    uint256 private constant UNIT = 1e18;
    int256 private constant SECONDS_PER_YEAR = 365 days;

    constructor() {
        _disableInitializers();
    }

    function initialize() external initializer {}

    /// @dev See IDiscountModel.description
    function description() external pure override returns (string memory) {
        return "Discount calculated using the zero coupon bond formula";
    }

    /// @dev See IDiscountModel.getPrice.
    function getPrice(
        uint256 initialImpliedAPY,
        uint256 futurePTValue,
        IDiscountModel.Term memory term
    ) external pure override returns (uint256) {
        uint256 timeLeft = term.expiryTimestamp - term.currentTimestamp;
        if (timeLeft == 0) {
            return futurePTValue;
        }
        int256 t = int256(timeLeft * UNIT) / SECONDS_PER_YEAR;
        int256 unitInt = int256(UNIT);
        int256 base = unitInt + int256(initialImpliedAPY);
        int256 ratePerSecond = LogExpMath.ln(base);
        int256 denominator = LogExpMath.exp((ratePerSecond * t) / unitInt);
        int256 presentValue = (int256(futurePTValue) * unitInt) / denominator;
        return uint256(presentValue);
    }
}

// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.8.0;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

Settings
{
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "appendCBOR": true,
    "bytecodeHash": "ipfs",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
    "openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/",
    "openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/",
    "openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/",
    "openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/",
    "openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/",
    "openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/",
    "config/=lib/spectra-contracts-configs/script/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "spectra-contracts-configs/=lib/spectra-contracts-configs/"
  ],
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"authority","type":"address"}],"name":"AccessManagedInvalidAuthority","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"uint32","name":"delay","type":"uint32"}],"name":"AccessManagedRequiredDelay","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"AccessManagedUnauthorized","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pt","type":"address"},{"indexed":true,"internalType":"address","name":"oracle","type":"address"},{"indexed":true,"internalType":"address","name":"discountModel","type":"address"}],"name":"OracleCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldBeacon","type":"address"},{"indexed":true,"internalType":"address","name":"newBeacon","type":"address"}],"name":"SpectraPriceOracleBeaconChanged","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_pt","type":"address"},{"internalType":"address","name":"_discountModel","type":"address"},{"internalType":"uint256","name":"initialImpliedAPY","type":"uint256"},{"internalType":"address","name":"initOwner","type":"address"}],"name":"createOracle","outputs":[{"internalType":"address","name":"oracle","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_initialAuthority","type":"address"},{"internalType":"address","name":"_spectraPriceOracleBeacon","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isConsumingScheduledOp","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_spectraPriceOracleBeacon","type":"address"}],"name":"setSpectraPriceOracleBeacon","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"spectraPriceOracleBeacon","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

608060405234801562000010575f80fd5b50620000216200002760201b60201c565b62000191565b5f620000386200012b60201b60201c565b9050805f0160089054906101000a900460ff161562000083576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b67ffffffffffffffff8016815f015f9054906101000a900467ffffffffffffffff1667ffffffffffffffff1614620001285767ffffffffffffffff815f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d267ffffffffffffffff6040516200011f919062000176565b60405180910390a15b50565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f67ffffffffffffffff82169050919050565b620001708162000152565b82525050565b5f6020820190506200018b5f83018462000165565b92915050565b611d8b806200019f5f395ff3fe608060405234801562000010575f80fd5b506004361062000086575f3560e01c80637a9e5e4b11620000615780637a9e5e4b14620001025780638fb360371462000122578063a7357a691462000144578063bf7e214f14620001645762000086565b8063485cc955146200008a57806367ac4e9814620000aa5780636fc04c5e14620000cc575b5f80fd5b620000a86004803603810190620000a2919062000d38565b62000186565b005b620000b46200041e565b604051620000c3919062000d8e565b60405180910390f35b620000ea6004803603810190620000e4919062000de1565b62000441565b604051620000f9919062000d8e565b60405180910390f35b6200012060048036038101906200011a919062000e50565b62000607565b005b6200012c620006fd565b6040516200013b919062000ebc565b60405180910390f35b6200016260048036038101906200015c919062000e50565b6200073a565b005b6200016e62000884565b6040516200017d919062000d8e565b60405180910390f35b5f62000191620008bb565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff16148015620001da5750825b90505f60018367ffffffffffffffff161480156200020e57505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156200021d575080155b1562000255576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315620002a3576001855f0160086101000a81548160ff0219169083151502179055505b620002ae87620008e2565b5f73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff16036200031f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620003169062000f5b565b60405180910390fd5b855f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508573ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3831562000415575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d260016040516200040c919062000fd8565b60405180910390a15b50505050505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f8073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff1603620004b3576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620004aa9062001041565b60405180910390fd5b5f63be20309460e01b86868686604051602401620004d5949392919062001072565b604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505090505f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681604051620005639062000cc5565b6200057092919062001151565b604051809103905ff0801580156200058a573d5f803e3d5ffd5b5091508473ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff168773ffffffffffffffffffffffffffffffffffffffff167f8b69ae2d925f933c6780984a3334f9475a74b2063a8a94f93c70fc0cc4f44d6c60405160405180910390a450949350505050565b5f62000612620008fa565b90506200061e62000884565b73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146200069057806040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000687919062000d8e565b60405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff163b03620006ee57816040517fc2f31e5e000000000000000000000000000000000000000000000000000000008152600401620006e5919062000d8e565b60405180910390fd5b620006f98262000901565b5050565b5f80620007096200098c565b9050805f0160149054906101000a900460ff166200072b575f60e01b62000734565b638fb3603760e01b5b91505090565b6200075862000748620008fa565b62000752620009b3565b620009bf565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603620007c9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620007c09062000f5b565b60405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3805f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b5f80620008906200098c565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b620008ec62000b1b565b620008f78162000b5e565b50565b5f33905090565b5f6200090c6200098c565b905081815f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055507f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad8260405162000980919062000d8e565b60405180910390a15050565b5f7ff3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00905090565b365f8036915091509091565b5f620009ca6200098c565b90505f8062000a06620009dc62000884565b873088885f90600492620009f3939291906200118b565b9062000a009190620011e1565b62000b76565b915091508162000b13575f8163ffffffff16111562000ad3576001835f0160146101000a81548160ff02191690831515021790555062000a4562000884565b73ffffffffffffffffffffffffffffffffffffffff166394c7d7ee8787876040518463ffffffff1660e01b815260040162000a839392919062001286565b5f604051808303815f87803b15801562000a9b575f80fd5b505af115801562000aae573d5f803e3d5ffd5b505050505f835f0160146101000a81548160ff02191690831515021790555062000b12565b856040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000b09919062000d8e565b60405180910390fd5b5b505050505050565b62000b2562000ca5565b62000b5c576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b62000b6862000b1b565b62000b738162000901565b50565b5f805f808773ffffffffffffffffffffffffffffffffffffffff1687878760405160240162000ba893929190620012ba565b60405160208183030381529060405263b700961360e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505060405162000bfc919062001335565b5f60405180830381855afa9150503d805f811462000c36576040519150601f19603f3d011682016040523d82523d5f602084013e62000c3b565b606091505b5091509150811562000c9a57604081511062000c75578080602001905181019062000c679190620013c5565b809450819550505062000c99565b602081511062000c98578080602001905181019062000c9591906200140a565b93505b5b5b505094509492505050565b5f62000cb0620008bb565b5f0160089054906101000a900460ff16905090565b61091b806200143b83390190565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f62000d028262000cd7565b9050919050565b62000d148162000cf6565b811462000d1f575f80fd5b50565b5f8135905062000d328162000d09565b92915050565b5f806040838503121562000d515762000d5062000cd3565b5b5f62000d608582860162000d22565b925050602062000d738582860162000d22565b9150509250929050565b62000d888162000cf6565b82525050565b5f60208201905062000da35f83018462000d7d565b92915050565b5f819050919050565b62000dbd8162000da9565b811462000dc8575f80fd5b50565b5f8135905062000ddb8162000db2565b92915050565b5f805f806080858703121562000dfc5762000dfb62000cd3565b5b5f62000e0b8782880162000d22565b945050602062000e1e8782880162000d22565b935050604062000e318782880162000dcb565b925050606062000e448782880162000d22565b91505092959194509250565b5f6020828403121562000e685762000e6762000cd3565b5b5f62000e778482850162000d22565b91505092915050565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b62000eb68162000e80565b82525050565b5f60208201905062000ed15f83018462000eab565b92915050565b5f82825260208201905092915050565b7f5370656374726150726963654f7261636c65426561636f6e2063616e6e6f74205f8201527f6265207a65726f00000000000000000000000000000000000000000000000000602082015250565b5f62000f4360278362000ed7565b915062000f508262000ee7565b604082019050919050565b5f6020820190508181035f83015262000f748162000f35565b9050919050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f62000fc062000fba62000fb48462000f7b565b62000f97565b62000f84565b9050919050565b62000fd28162000fa0565b82525050565b5f60208201905062000fed5f83018462000fc7565b92915050565b7f505420616464726573732063616e6e6f74206265207a65726f000000000000005f82015250565b5f6200102960198362000ed7565b9150620010368262000ff3565b602082019050919050565b5f6020820190508181035f8301526200105a816200101b565b9050919050565b6200106c8162000da9565b82525050565b5f608082019050620010875f83018762000d7d565b62001096602083018662000d7d565b620010a5604083018562001061565b620010b4606083018462000d7d565b95945050505050565b5f81519050919050565b5f82825260208201905092915050565b5f5b83811015620010f6578082015181840152602081019050620010d9565b5f8484015250505050565b5f601f19601f8301169050919050565b5f6200111d82620010bd565b620011298185620010c7565b93506200113b818560208601620010d7565b620011468162001101565b840191505092915050565b5f604082019050620011665f83018562000d7d565b81810360208301526200117a818462001111565b90509392505050565b5f80fd5b5f80fd5b5f8085851115620011a157620011a062001183565b5b83861115620011b557620011b462001187565b5b6001850283019150848603905094509492505050565b5f82905092915050565b5f82821b905092915050565b5f620011ee8383620011cb565b82620011fb813562000e80565b925060048210156200123e57620012397fffffffff0000000000000000000000000000000000000000000000000000000083600403600802620011d5565b831692505b505092915050565b828183375f83830152505050565b5f620012618385620010c7565b93506200127083858462001246565b6200127b8362001101565b840190509392505050565b5f6040820190506200129b5f83018662000d7d565b8181036020830152620012b081848662001254565b9050949350505050565b5f606082019050620012cf5f83018662000d7d565b620012de602083018562000d7d565b620012ed604083018462000eab565b949350505050565b5f81905092915050565b5f6200130b82620010bd565b620013178185620012f5565b935062001329818560208601620010d7565b80840191505092915050565b5f620013428284620012ff565b915081905092915050565b5f8115159050919050565b62001363816200134d565b81146200136e575f80fd5b50565b5f81519050620013818162001358565b92915050565b5f63ffffffff82169050919050565b620013a18162001387565b8114620013ac575f80fd5b50565b5f81519050620013bf8162001396565b92915050565b5f8060408385031215620013de57620013dd62000cd3565b5b5f620013ed8582860162001371565b92505060206200140085828601620013af565b9150509250929050565b5f6020828403121562001422576200142162000cd3565b5b5f620014318482850162001371565b9150509291505056fe60a060405260405161091b38038061091b8339818101604052810190610025919061065e565b610035828261007060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff16815250505050610765565b61007f8261016060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff167f1cf3b03a6cf19fa2baba4df148e9dcabedea7f8a5c07840e207e5c089be95d3e60405160405180910390a25f8151111561014d576101478273ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610117573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061013b91906106b8565b826102fb60201b60201c565b5061015c565b61015b61038160201b60201c565b5b5050565b5f8173ffffffffffffffffffffffffffffffffffffffff163b036101bb57806040517f64ced0ec0000000000000000000000000000000000000000000000000000000081526004016101b291906106f2565b60405180910390fd5b806101ed7fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d505f1b6103bd60201b60201c565b5f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f8173ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610276573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061029a91906106b8565b90505f8173ffffffffffffffffffffffffffffffffffffffff163b036102f757806040517f4c9c8ce30000000000000000000000000000000000000000000000000000000081526004016102ee91906106f2565b60405180910390fd5b5050565b60605f808473ffffffffffffffffffffffffffffffffffffffff1684604051610324919061074f565b5f60405180830381855af49150503d805f811461035c576040519150601f19603f3d011682016040523d82523d5f602084013e610361565b606091505b50915091506103778583836103c660201b60201c565b9250505092915050565b5f3411156103bb576040517fb398979f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f819050919050565b6060826103e1576103dc8261045960201b60201c565b610451565b5f825114801561040757505f8473ffffffffffffffffffffffffffffffffffffffff163b145b1561044957836040517f9996b31500000000000000000000000000000000000000000000000000000000815260040161044091906106f2565b60405180910390fd5b819050610452565b5b9392505050565b5f8151111561046b5780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6104d7826104ae565b9050919050565b6104e7816104cd565b81146104f1575f80fd5b50565b5f81519050610502816104de565b92915050565b5f80fd5b5f80fd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61055682610510565b810181811067ffffffffffffffff8211171561057557610574610520565b5b80604052505050565b5f61058761049d565b9050610593828261054d565b919050565b5f67ffffffffffffffff8211156105b2576105b1610520565b5b6105bb82610510565b9050602081019050919050565b5f5b838110156105e55780820151818401526020810190506105ca565b5f8484015250505050565b5f6106026105fd84610598565b61057e565b90508281526020810184848401111561061e5761061d61050c565b5b6106298482856105c8565b509392505050565b5f82601f83011261064557610644610508565b5b81516106558482602086016105f0565b91505092915050565b5f8060408385031215610674576106736104a6565b5b5f610681858286016104f4565b925050602083015167ffffffffffffffff8111156106a2576106a16104aa565b5b6106ae85828601610631565b9150509250929050565b5f602082840312156106cd576106cc6104a6565b5b5f6106da848285016104f4565b91505092915050565b6106ec816104cd565b82525050565b5f6020820190506107055f8301846106e3565b92915050565b5f81519050919050565b5f81905092915050565b5f6107298261070b565b6107338185610715565b93506107438185602086016105c8565b80840191505092915050565b5f61075a828461071f565b915081905092915050565b60805161019f61077c5f395f60bc015261019f5ff3fe608060405261000c61000e565b005b61001e610019610020565b61009a565b565b5f6100296100b9565b73ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610071573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610095919061013e565b905090565b365f80375f80365f845af43d5f803e805f81146100b5573d5ff35b3d5ffd5b5f7f0000000000000000000000000000000000000000000000000000000000000000905090565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61010d826100e4565b9050919050565b61011d81610103565b8114610127575f80fd5b50565b5f8151905061013881610114565b92915050565b5f60208284031215610153576101526100e0565b5b5f6101608482850161012a565b9150509291505056fea2646970667358221220a735dbe5abce740bb14e675ba1faab62822d25955b97303218ae011a82cff6a264736f6c63430008160033a264697066735822122051c2f6024d9d42d7e43926e836d69bd014164ae736fb19984634d6c4b445a5a364736f6c63430008160033

Deployed Bytecode

0x608060405234801562000010575f80fd5b506004361062000086575f3560e01c80637a9e5e4b11620000615780637a9e5e4b14620001025780638fb360371462000122578063a7357a691462000144578063bf7e214f14620001645762000086565b8063485cc955146200008a57806367ac4e9814620000aa5780636fc04c5e14620000cc575b5f80fd5b620000a86004803603810190620000a2919062000d38565b62000186565b005b620000b46200041e565b604051620000c3919062000d8e565b60405180910390f35b620000ea6004803603810190620000e4919062000de1565b62000441565b604051620000f9919062000d8e565b60405180910390f35b6200012060048036038101906200011a919062000e50565b62000607565b005b6200012c620006fd565b6040516200013b919062000ebc565b60405180910390f35b6200016260048036038101906200015c919062000e50565b6200073a565b005b6200016e62000884565b6040516200017d919062000d8e565b60405180910390f35b5f62000191620008bb565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff16148015620001da5750825b90505f60018367ffffffffffffffff161480156200020e57505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156200021d575080155b1562000255576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315620002a3576001855f0160086101000a81548160ff0219169083151502179055505b620002ae87620008e2565b5f73ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff16036200031f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620003169062000f5b565b60405180910390fd5b855f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508573ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3831562000415575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d260016040516200040c919062000fd8565b60405180910390a15b50505050505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f8073ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff1603620004b3576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620004aa9062001041565b60405180910390fd5b5f63be20309460e01b86868686604051602401620004d5949392919062001072565b604051602081830303815290604052907bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505090505f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681604051620005639062000cc5565b6200057092919062001151565b604051809103905ff0801580156200058a573d5f803e3d5ffd5b5091508473ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff168773ffffffffffffffffffffffffffffffffffffffff167f8b69ae2d925f933c6780984a3334f9475a74b2063a8a94f93c70fc0cc4f44d6c60405160405180910390a450949350505050565b5f62000612620008fa565b90506200061e62000884565b73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146200069057806040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000687919062000d8e565b60405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff163b03620006ee57816040517fc2f31e5e000000000000000000000000000000000000000000000000000000008152600401620006e5919062000d8e565b60405180910390fd5b620006f98262000901565b5050565b5f80620007096200098c565b9050805f0160149054906101000a900460ff166200072b575f60e01b62000734565b638fb3603760e01b5b91505090565b6200075862000748620008fa565b62000752620009b3565b620009bf565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603620007c9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401620007c09062000f5b565b60405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167f468315d9dc92401a0fa54fcf9a6fbc201b8979892d4df7b6a7f7483fe85943fb60405160405180910390a3805f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b5f80620008906200098c565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b620008ec62000b1b565b620008f78162000b5e565b50565b5f33905090565b5f6200090c6200098c565b905081815f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055507f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad8260405162000980919062000d8e565b60405180910390a15050565b5f7ff3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00905090565b365f8036915091509091565b5f620009ca6200098c565b90505f8062000a06620009dc62000884565b873088885f90600492620009f3939291906200118b565b9062000a009190620011e1565b62000b76565b915091508162000b13575f8163ffffffff16111562000ad3576001835f0160146101000a81548160ff02191690831515021790555062000a4562000884565b73ffffffffffffffffffffffffffffffffffffffff166394c7d7ee8787876040518463ffffffff1660e01b815260040162000a839392919062001286565b5f604051808303815f87803b15801562000a9b575f80fd5b505af115801562000aae573d5f803e3d5ffd5b505050505f835f0160146101000a81548160ff02191690831515021790555062000b12565b856040517f068ca9d800000000000000000000000000000000000000000000000000000000815260040162000b09919062000d8e565b60405180910390fd5b5b505050505050565b62000b2562000ca5565b62000b5c576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b62000b6862000b1b565b62000b738162000901565b50565b5f805f808773ffffffffffffffffffffffffffffffffffffffff1687878760405160240162000ba893929190620012ba565b60405160208183030381529060405263b700961360e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505060405162000bfc919062001335565b5f60405180830381855afa9150503d805f811462000c36576040519150601f19603f3d011682016040523d82523d5f602084013e62000c3b565b606091505b5091509150811562000c9a57604081511062000c75578080602001905181019062000c679190620013c5565b809450819550505062000c99565b602081511062000c98578080602001905181019062000c9591906200140a565b93505b5b5b505094509492505050565b5f62000cb0620008bb565b5f0160089054906101000a900460ff16905090565b61091b806200143b83390190565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f62000d028262000cd7565b9050919050565b62000d148162000cf6565b811462000d1f575f80fd5b50565b5f8135905062000d328162000d09565b92915050565b5f806040838503121562000d515762000d5062000cd3565b5b5f62000d608582860162000d22565b925050602062000d738582860162000d22565b9150509250929050565b62000d888162000cf6565b82525050565b5f60208201905062000da35f83018462000d7d565b92915050565b5f819050919050565b62000dbd8162000da9565b811462000dc8575f80fd5b50565b5f8135905062000ddb8162000db2565b92915050565b5f805f806080858703121562000dfc5762000dfb62000cd3565b5b5f62000e0b8782880162000d22565b945050602062000e1e8782880162000d22565b935050604062000e318782880162000dcb565b925050606062000e448782880162000d22565b91505092959194509250565b5f6020828403121562000e685762000e6762000cd3565b5b5f62000e778482850162000d22565b91505092915050565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b62000eb68162000e80565b82525050565b5f60208201905062000ed15f83018462000eab565b92915050565b5f82825260208201905092915050565b7f5370656374726150726963654f7261636c65426561636f6e2063616e6e6f74205f8201527f6265207a65726f00000000000000000000000000000000000000000000000000602082015250565b5f62000f4360278362000ed7565b915062000f508262000ee7565b604082019050919050565b5f6020820190508181035f83015262000f748162000f35565b9050919050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f62000fc062000fba62000fb48462000f7b565b62000f97565b62000f84565b9050919050565b62000fd28162000fa0565b82525050565b5f60208201905062000fed5f83018462000fc7565b92915050565b7f505420616464726573732063616e6e6f74206265207a65726f000000000000005f82015250565b5f6200102960198362000ed7565b9150620010368262000ff3565b602082019050919050565b5f6020820190508181035f8301526200105a816200101b565b9050919050565b6200106c8162000da9565b82525050565b5f608082019050620010875f83018762000d7d565b62001096602083018662000d7d565b620010a5604083018562001061565b620010b4606083018462000d7d565b95945050505050565b5f81519050919050565b5f82825260208201905092915050565b5f5b83811015620010f6578082015181840152602081019050620010d9565b5f8484015250505050565b5f601f19601f8301169050919050565b5f6200111d82620010bd565b620011298185620010c7565b93506200113b818560208601620010d7565b620011468162001101565b840191505092915050565b5f604082019050620011665f83018562000d7d565b81810360208301526200117a818462001111565b90509392505050565b5f80fd5b5f80fd5b5f8085851115620011a157620011a062001183565b5b83861115620011b557620011b462001187565b5b6001850283019150848603905094509492505050565b5f82905092915050565b5f82821b905092915050565b5f620011ee8383620011cb565b82620011fb813562000e80565b925060048210156200123e57620012397fffffffff0000000000000000000000000000000000000000000000000000000083600403600802620011d5565b831692505b505092915050565b828183375f83830152505050565b5f620012618385620010c7565b93506200127083858462001246565b6200127b8362001101565b840190509392505050565b5f6040820190506200129b5f83018662000d7d565b8181036020830152620012b081848662001254565b9050949350505050565b5f606082019050620012cf5f83018662000d7d565b620012de602083018562000d7d565b620012ed604083018462000eab565b949350505050565b5f81905092915050565b5f6200130b82620010bd565b620013178185620012f5565b935062001329818560208601620010d7565b80840191505092915050565b5f620013428284620012ff565b915081905092915050565b5f8115159050919050565b62001363816200134d565b81146200136e575f80fd5b50565b5f81519050620013818162001358565b92915050565b5f63ffffffff82169050919050565b620013a18162001387565b8114620013ac575f80fd5b50565b5f81519050620013bf8162001396565b92915050565b5f8060408385031215620013de57620013dd62000cd3565b5b5f620013ed8582860162001371565b92505060206200140085828601620013af565b9150509250929050565b5f6020828403121562001422576200142162000cd3565b5b5f620014318482850162001371565b9150509291505056fe60a060405260405161091b38038061091b8339818101604052810190610025919061065e565b610035828261007060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff16815250505050610765565b61007f8261016060201b60201c565b8173ffffffffffffffffffffffffffffffffffffffff167f1cf3b03a6cf19fa2baba4df148e9dcabedea7f8a5c07840e207e5c089be95d3e60405160405180910390a25f8151111561014d576101478273ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610117573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061013b91906106b8565b826102fb60201b60201c565b5061015c565b61015b61038160201b60201c565b5b5050565b5f8173ffffffffffffffffffffffffffffffffffffffff163b036101bb57806040517f64ced0ec0000000000000000000000000000000000000000000000000000000081526004016101b291906106f2565b60405180910390fd5b806101ed7fa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d505f1b6103bd60201b60201c565b5f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f8173ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610276573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061029a91906106b8565b90505f8173ffffffffffffffffffffffffffffffffffffffff163b036102f757806040517f4c9c8ce30000000000000000000000000000000000000000000000000000000081526004016102ee91906106f2565b60405180910390fd5b5050565b60605f808473ffffffffffffffffffffffffffffffffffffffff1684604051610324919061074f565b5f60405180830381855af49150503d805f811461035c576040519150601f19603f3d011682016040523d82523d5f602084013e610361565b606091505b50915091506103778583836103c660201b60201c565b9250505092915050565b5f3411156103bb576040517fb398979f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f819050919050565b6060826103e1576103dc8261045960201b60201c565b610451565b5f825114801561040757505f8473ffffffffffffffffffffffffffffffffffffffff163b145b1561044957836040517f9996b31500000000000000000000000000000000000000000000000000000000815260040161044091906106f2565b60405180910390fd5b819050610452565b5b9392505050565b5f8151111561046b5780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6104d7826104ae565b9050919050565b6104e7816104cd565b81146104f1575f80fd5b50565b5f81519050610502816104de565b92915050565b5f80fd5b5f80fd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61055682610510565b810181811067ffffffffffffffff8211171561057557610574610520565b5b80604052505050565b5f61058761049d565b9050610593828261054d565b919050565b5f67ffffffffffffffff8211156105b2576105b1610520565b5b6105bb82610510565b9050602081019050919050565b5f5b838110156105e55780820151818401526020810190506105ca565b5f8484015250505050565b5f6106026105fd84610598565b61057e565b90508281526020810184848401111561061e5761061d61050c565b5b6106298482856105c8565b509392505050565b5f82601f83011261064557610644610508565b5b81516106558482602086016105f0565b91505092915050565b5f8060408385031215610674576106736104a6565b5b5f610681858286016104f4565b925050602083015167ffffffffffffffff8111156106a2576106a16104aa565b5b6106ae85828601610631565b9150509250929050565b5f602082840312156106cd576106cc6104a6565b5b5f6106da848285016104f4565b91505092915050565b6106ec816104cd565b82525050565b5f6020820190506107055f8301846106e3565b92915050565b5f81519050919050565b5f81905092915050565b5f6107298261070b565b6107338185610715565b93506107438185602086016105c8565b80840191505092915050565b5f61075a828461071f565b915081905092915050565b60805161019f61077c5f395f60bc015261019f5ff3fe608060405261000c61000e565b005b61001e610019610020565b61009a565b565b5f6100296100b9565b73ffffffffffffffffffffffffffffffffffffffff16635c60da1b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610071573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610095919061013e565b905090565b365f80375f80365f845af43d5f803e805f81146100b5573d5ff35b3d5ffd5b5f7f0000000000000000000000000000000000000000000000000000000000000000905090565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61010d826100e4565b9050919050565b61011d81610103565b8114610127575f80fd5b50565b5f8151905061013881610114565b92915050565b5f60208284031215610153576101526100e0565b5b5f6101608482850161012a565b9150509291505056fea2646970667358221220a735dbe5abce740bb14e675ba1faab62822d25955b97303218ae011a82cff6a264736f6c63430008160033a264697066735822122051c2f6024d9d42d7e43926e836d69bd014164ae736fb19984634d6c4b445a5a364736f6c63430008160033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.