Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00Multichain Info
N/A
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
CollateralHolderVault
Compiler Version
v0.8.22+commit.4fc1097e
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT /* ———————————————————————————————————————————————————————————————————————————————— * * _____ ______ ______ __ __ __ __ ______ __ __ * * /\ __-. /\__ _\ /\ == \ /\ \ /\ "-.\ \ /\ \ /\__ _\ /\ \_\ \ * * \ \ \/\ \ \/_/\ \/ \ \ __< \ \ \ \ \ \-. \ \ \ \ \/_/\ \/ \ \____ \ * * \ \____- \ \_\ \ \_\ \_\ \ \_\ \ \_\\"\_\ \ \_\ \ \_\ \/\_____\ * * \/____/ \/_/ \/_/ /_/ \/_/ \/_/ \/_/ \/_/ \/_/ \/_____/ * * * * ————————————————————————————————— dtrinity.org ————————————————————————————————— * * * * ▲ * * ▲ ▲ * * * * ———————————————————————————————————————————————————————————————————————————————— * * dTRINITY Protocol: https://github.com/dtrinity * * ———————————————————————————————————————————————————————————————————————————————— */ pragma solidity ^0.8.20; import "./CollateralVault.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; /** * @title CollateralHolderVault * @notice Implementation of CollateralVault for only holding tokens */ contract CollateralHolderVault is CollateralVault { using SafeERC20 for IERC20Metadata; using EnumerableSet for EnumerableSet.AddressSet; /* Errors */ error CannotWithdrawMoreValueThanDeposited(uint256 requestedAmount, uint256 maxAmount); error ToCollateralAmountBelowMin(uint256 toCollateralAmount, uint256 toMinCollateral); constructor(IPriceOracleGetter oracle) CollateralVault(oracle) {} /** * @notice Exchanges one type of collateral for another * @param fromCollateralAmount Amount of collateral to exchange from * @param fromCollateral Address of the source collateral token * @param toCollateralAmount Amount of collateral to receive * @param toCollateral Address of the destination collateral token * @dev Ensures the exchange maintains equivalent value using oracle prices */ function exchangeCollateral( uint256 fromCollateralAmount, address fromCollateral, uint256 toCollateralAmount, address toCollateral ) public onlyRole(COLLATERAL_STRATEGY_ROLE) { // The collateral being received by the vault (fromCollateral) must still be supported // `toCollateral` may have been de-listed (disallowed) in order to let the vault gradually // swap it out, so we intentionally do NOT enforce the check on `toCollateral`. require(_supportedCollaterals.contains(fromCollateral), "Unsupported collateral"); uint256 maxAmount = maxExchangeAmount(fromCollateralAmount, fromCollateral, toCollateral); if (toCollateralAmount > maxAmount) { revert CannotWithdrawMoreValueThanDeposited(toCollateralAmount, maxAmount); } IERC20Metadata(fromCollateral).safeTransferFrom(msg.sender, address(this), fromCollateralAmount); IERC20Metadata(toCollateral).safeTransfer(msg.sender, toCollateralAmount); } /** * @notice Exchanges collateral for the maximum possible amount of another collateral * @param fromCollateralAmount Amount of collateral to exchange from * @param fromCollateral Address of the source collateral token * @param toCollateral Address of the destination collateral token * @param toMinCollateral Minimum amount of destination collateral to receive * @dev Calculates and executes the maximum possible exchange while respecting minimum amount */ function exchangeMaxCollateral( uint256 fromCollateralAmount, address fromCollateral, address toCollateral, uint256 toMinCollateral ) public onlyRole(COLLATERAL_STRATEGY_ROLE) { uint256 toCollateralAmount = maxExchangeAmount(fromCollateralAmount, fromCollateral, toCollateral); if (toCollateralAmount < toMinCollateral) { revert ToCollateralAmountBelowMin(toCollateralAmount, toMinCollateral); } exchangeCollateral(fromCollateralAmount, fromCollateral, toCollateralAmount, toCollateral); } /** * @notice Calculates the maximum amount of destination collateral that can be received * @param fromCollateralAmount Amount of source collateral * @param fromCollateral Address of the source collateral token * @param toCollateral Address of the destination collateral token * @return toCollateralAmount The maximum amount of destination collateral that can be received * @dev Uses oracle prices and token decimals to maintain equivalent value */ function maxExchangeAmount( uint256 fromCollateralAmount, address fromCollateral, address toCollateral ) public view returns (uint256 toCollateralAmount) { uint256 fromCollateralPrice = oracle.getAssetPrice(fromCollateral); uint256 toCollateralPrice = oracle.getAssetPrice(toCollateral); uint8 fromCollateralDecimals = IERC20Metadata(fromCollateral).decimals(); uint8 toCollateralDecimals = IERC20Metadata(toCollateral).decimals(); uint256 fromCollateralBaseValue = Math.mulDiv(fromCollateralPrice, fromCollateralAmount, 10 ** fromCollateralDecimals); toCollateralAmount = Math.mulDiv(fromCollateralBaseValue, 10 ** toCollateralDecimals, toCollateralPrice); return toCollateralAmount; } /** * @notice Calculates the total value of all collateral in the vault * @return baseValue The total value of all collateral in base */ function totalValue() public view override returns (uint256 baseValue) { return _totalValueOfSupportedCollaterals(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol) pragma solidity ^0.8.20; import {IAccessControl} from "./IAccessControl.sol"; import {Context} from "../utils/Context.sol"; import {IERC165, ERC165} from "../utils/introspection/ERC165.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControl is Context, IAccessControl, ERC165 { struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } mapping(bytes32 role => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with an {AccessControlUnauthorizedAccount} error including the required role. */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /// @inheritdoc IERC165 function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual returns (bool) { return _roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessControlBadConfirmation(); } _revokeRole(role, callerConfirmation); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual returns (bool) { if (!hasRole(role, account)) { _roles[role].hasRole[account] = true; emit RoleGranted(role, account, _msgSender()); return true; } else { return false; } } /** * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual returns (bool) { if (hasRole(role, account)) { _roles[role].hasRole[account] = false; emit RoleRevoked(role, account, _msgSender()); return true; } else { return false; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol) pragma solidity >=0.8.4; /** * @dev External interface of AccessControl declared to support ERC-165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted to signal this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol) pragma solidity >=0.6.2; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol) pragma solidity >=0.4.16; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol) pragma solidity >=0.4.16; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol) pragma solidity >=0.4.16; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity >=0.6.2; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful. */ function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) { return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful. */ function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) { return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol) // This file was procedurally generated from scripts/generate/templates/Arrays.js. pragma solidity ^0.8.20; import {Comparators} from "./Comparators.sol"; import {SlotDerivation} from "./SlotDerivation.sol"; import {StorageSlot} from "./StorageSlot.sol"; import {Math} from "./math/Math.sol"; /** * @dev Collection of functions related to array types. */ library Arrays { using SlotDerivation for bytes32; using StorageSlot for bytes32; /** * @dev Sort an array of uint256 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( uint256[] memory array, function(uint256, uint256) pure returns (bool) comp ) internal pure returns (uint256[] memory) { _quickSort(_begin(array), _end(array), comp); return array; } /** * @dev Variant of {sort} that sorts an array of uint256 in increasing order. */ function sort(uint256[] memory array) internal pure returns (uint256[] memory) { sort(array, Comparators.lt); return array; } /** * @dev Sort an array of address (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( address[] memory array, function(address, address) pure returns (bool) comp ) internal pure returns (address[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of address in increasing order. */ function sort(address[] memory array) internal pure returns (address[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Sort an array of bytes32 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( bytes32[] memory array, function(bytes32, bytes32) pure returns (bool) comp ) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of bytes32 in increasing order. */ function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops * at end (exclusive). Sorting follows the `comp` comparator. * * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls. * * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should * be used only if the limits are within a memory array. */ function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure { unchecked { if (end - begin < 0x40) return; // Use first element as pivot uint256 pivot = _mload(begin); // Position where the pivot should be at the end of the loop uint256 pos = begin; for (uint256 it = begin + 0x20; it < end; it += 0x20) { if (comp(_mload(it), pivot)) { // If the value stored at the iterator's position comes before the pivot, we increment the // position of the pivot and move the value there. pos += 0x20; _swap(pos, it); } } _swap(begin, pos); // Swap pivot into place _quickSort(begin, pos, comp); // Sort the left side of the pivot _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot } } /** * @dev Pointer to the memory location of the first element of `array`. */ function _begin(uint256[] memory array) private pure returns (uint256 ptr) { assembly ("memory-safe") { ptr := add(array, 0x20) } } /** * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word * that comes just after the last element of the array. */ function _end(uint256[] memory array) private pure returns (uint256 ptr) { unchecked { return _begin(array) + array.length * 0x20; } } /** * @dev Load memory word (as a uint256) at location `ptr`. */ function _mload(uint256 ptr) private pure returns (uint256 value) { assembly { value := mload(ptr) } } /** * @dev Swaps the elements memory location `ptr1` and `ptr2`. */ function _swap(uint256 ptr1, uint256 ptr2) private pure { assembly { let value1 := mload(ptr1) let value2 := mload(ptr2) mstore(ptr1, value2) mstore(ptr2, value1) } } /// @dev Helper: low level cast address memory array to uint256 memory array function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 memory array to uint256 memory array function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast address comp function to uint256 comp function function _castToUint256Comp( function(address, address) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 comp function to uint256 comp function function _castToUint256Comp( function(bytes32, bytes32) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /** * @dev Searches a sorted `array` and returns the first index that contains * a value greater or equal to `element`. If no such index exists (i.e. all * values in the array are strictly less than `element`), the array length is * returned. Time complexity O(log n). * * NOTE: The `array` is expected to be sorted in ascending order, and to * contain no repeated elements. * * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks * support for repeated elements in the array. The {lowerBound} function should * be used instead. */ function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { low = mid + 1; } } // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound. if (low > 0 && unsafeAccess(array, low - 1).value == element) { return low - 1; } else { return low; } } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value greater or equal than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound]. */ function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value strictly greater than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound]. */ function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Same as {lowerBound}, but with an array in memory. */ function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Same as {upperBound}, but with an array in memory. */ function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getAddressSlot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getBytes32Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getUint256Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getBytesSlot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getStringSlot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(address[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(bytes32[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(uint256[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(bytes[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(string[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to compare values. * * _Available since v5.1._ */ library Comparators { function lt(uint256 a, uint256 b) internal pure returns (bool) { return a < b; } function gt(uint256 a, uint256 b) internal pure returns (bool) { return a > b; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol) // This file was procedurally generated from scripts/generate/templates/SlotDerivation.js. pragma solidity ^0.8.20; /** * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by * the solidity language / compiler. * * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.]. * * Example usage: * ```solidity * contract Example { * // Add the library methods * using StorageSlot for bytes32; * using SlotDerivation for bytes32; * * // Declare a namespace * string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot * * function setValueInNamespace(uint256 key, address newValue) internal { * _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue; * } * * function getValueInNamespace(uint256 key) internal view returns (address) { * return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value; * } * } * ``` * * TIP: Consider using this library along with {StorageSlot}. * * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking * upgrade safety will ignore the slots accessed through this library. * * _Available since v5.1._ */ library SlotDerivation { /** * @dev Derive an ERC-7201 slot from a string (namespace). */ function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) { assembly ("memory-safe") { mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1)) slot := and(keccak256(0x00, 0x20), not(0xff)) } } /** * @dev Add an offset to a slot to get the n-th element of a structure or an array. */ function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) { unchecked { return bytes32(uint256(slot) + pos); } } /** * @dev Derive the location of the first element in an array from the slot where the length is stored. */ function deriveArray(bytes32 slot) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, slot) result := keccak256(0x00, 0x20) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, and(key, shr(96, not(0)))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, iszero(iszero(key))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /// @inheritdoc IERC165 function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol) pragma solidity >=0.4.16; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Return the 512-bit addition of two uint256. * * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low. */ function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) { assembly ("memory-safe") { low := add(a, b) high := lt(low, a) } } /** * @dev Return the 512-bit multiplication of two uint256. * * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low. */ function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) { // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = high * 2²⁵⁶ + low. assembly ("memory-safe") { let mm := mulmod(a, b, not(0)) low := mul(a, b) high := sub(sub(mm, low), lt(mm, low)) } } /** * @dev Returns the addition of two unsigned integers, with a success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; success = c >= a; result = c * SafeCast.toUint(success); } } /** * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a - b; success = c <= a; result = c * SafeCast.toUint(success); } } /** * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a * b; assembly ("memory-safe") { // Only true when the multiplication doesn't overflow // (c / a == b) || (a == 0) success := or(eq(div(c, a), b), iszero(a)) } // equivalent to: success ? c : 0 result = c * SafeCast.toUint(success); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { success = b > 0; assembly ("memory-safe") { // The `DIV` opcode returns zero when the denominator is 0. result := div(a, b) } } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { success = b > 0; assembly ("memory-safe") { // The `MOD` opcode returns zero when the denominator is 0. result := mod(a, b) } } } /** * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing. */ function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) { (bool success, uint256 result) = tryAdd(a, b); return ternary(success, result, type(uint256).max); } /** * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing. */ function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) { (, uint256 result) = trySub(a, b); return result; } /** * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing. */ function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) { (bool success, uint256 result) = tryMul(a, b); return ternary(success, result, type(uint256).max); } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { (uint256 high, uint256 low) = mul512(x, y); // Handle non-overflow cases, 256 by 256 division. if (high == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return low / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= high) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [high low]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. high := sub(high, gt(remainder, low)) low := sub(low, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly ("memory-safe") { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [high low] by twos. low := div(low, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from high into low. low |= high * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high // is no longer required. result = low * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256. */ function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) { unchecked { (uint256 high, uint256 low) = mul512(x, y); if (high >= 1 << n) { Panic.panic(Panic.UNDER_OVERFLOW); } return (high << (256 - n)) | (low >> n); } } /** * @dev Calculates x * y >> n with full precision, following the selected rounding direction. */ function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) { return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // If upper 8 bits of 16-bit half set, add 8 to result r |= SafeCast.toUint((x >> r) > 0xff) << 3; // If upper 4 bits of 8-bit half set, add 4 to result r |= SafeCast.toUint((x >> r) > 0xf) << 2; // Shifts value right by the current result and use it as an index into this lookup table: // // | x (4 bits) | index | table[index] = MSB position | // |------------|---------|-----------------------------| // | 0000 | 0 | table[0] = 0 | // | 0001 | 1 | table[1] = 0 | // | 0010 | 2 | table[2] = 1 | // | 0011 | 3 | table[3] = 1 | // | 0100 | 4 | table[4] = 2 | // | 0101 | 5 | table[5] = 2 | // | 0110 | 6 | table[6] = 2 | // | 0111 | 7 | table[7] = 2 | // | 1000 | 8 | table[8] = 3 | // | 1001 | 9 | table[9] = 3 | // | 1010 | 10 | table[10] = 3 | // | 1011 | 11 | table[11] = 3 | // | 1100 | 12 | table[12] = 3 | // | 1101 | 13 | table[13] = 3 | // | 1110 | 14 | table[14] = 3 | // | 1111 | 15 | table[15] = 3 | // // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes. assembly ("memory-safe") { r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000)) } } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8 return (r >> 3) | SafeCast.toUint((x >> r) > 0xff); } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; import {Arrays} from "../Arrays.sol"; import {Math} from "../math/Math.sol"; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * - Set can be cleared (all elements removed) in O(n). * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * The following types are supported: * * - `bytes32` (`Bytes32Set`) since v3.3.0 * - `address` (`AddressSet`) since v3.3.0 * - `uint256` (`UintSet`) since v3.3.0 * - `string` (`StringSet`) since v5.4.0 * - `bytes` (`BytesSet`) since v5.4.0 * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Removes all the values from a set. O(n). * * WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that * using it may render the function uncallable if the set grows to the point where clearing it consumes too much * gas to fit in a block. */ function _clear(Set storage set) private { uint256 len = _length(set); for (uint256 i = 0; i < len; ++i) { delete set._positions[set._values[i]]; } Arrays.unsafeSetLength(set._values, 0); } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } /** * @dev Return a slice of the set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) { unchecked { end = Math.min(end, _length(set)); start = Math.min(start, end); uint256 len = end - start; bytes32[] memory result = new bytes32[](len); for (uint256 i = 0; i < len; ++i) { result[i] = Arrays.unsafeAccess(set._values, start + i).value; } return result; } } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Removes all the values from a set. O(n). * * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block. */ function clear(Bytes32Set storage set) internal { _clear(set._inner); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; assembly ("memory-safe") { result := store } return result; } /** * @dev Return a slice of the set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner, start, end); bytes32[] memory result; assembly ("memory-safe") { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes all the values from a set. O(n). * * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block. */ function clear(AddressSet storage set) internal { _clear(set._inner); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly ("memory-safe") { result := store } return result; } /** * @dev Return a slice of the set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner, start, end); address[] memory result; assembly ("memory-safe") { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Removes all the values from a set. O(n). * * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block. */ function clear(UintSet storage set) internal { _clear(set._inner); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly ("memory-safe") { result := store } return result; } /** * @dev Return a slice of the set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner, start, end); uint256[] memory result; assembly ("memory-safe") { result := store } return result; } struct StringSet { // Storage of set values string[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(string value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(StringSet storage set, string memory value) internal returns (bool) { if (!contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(StringSet storage set, string memory value) internal returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { string memory lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Removes all the values from a set. O(n). * * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block. */ function clear(StringSet storage set) internal { uint256 len = length(set); for (uint256 i = 0; i < len; ++i) { delete set._positions[set._values[i]]; } Arrays.unsafeSetLength(set._values, 0); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(StringSet storage set, string memory value) internal view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function length(StringSet storage set) internal view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(StringSet storage set, uint256 index) internal view returns (string memory) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(StringSet storage set) internal view returns (string[] memory) { return set._values; } /** * @dev Return a slice of the set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) { unchecked { end = Math.min(end, length(set)); start = Math.min(start, end); uint256 len = end - start; string[] memory result = new string[](len); for (uint256 i = 0; i < len; ++i) { result[i] = Arrays.unsafeAccess(set._values, start + i).value; } return result; } } struct BytesSet { // Storage of set values bytes[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(BytesSet storage set, bytes memory value) internal returns (bool) { if (!contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(BytesSet storage set, bytes memory value) internal returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes memory lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Removes all the values from a set. O(n). * * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block. */ function clear(BytesSet storage set) internal { uint256 len = length(set); for (uint256 i = 0; i < len; ++i) { delete set._positions[set._values[i]]; } Arrays.unsafeSetLength(set._values, 0); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(BytesSet storage set, bytes memory value) internal view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function length(BytesSet storage set) internal view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(BytesSet storage set) internal view returns (bytes[] memory) { return set._values; } /** * @dev Return a slice of the set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) { unchecked { end = Math.min(end, length(set)); start = Math.min(start, end); uint256 len = end - start; bytes[] memory result = new bytes[](len); for (uint256 i = 0; i < len; ++i) { result[i] = Arrays.unsafeAccess(set._values, start + i).value; } return result; } } }
// SPDX-License-Identifier: AGPL-3.0 /* ———————————————————————————————————————————————————————————————————————————————— * * _____ ______ ______ __ __ __ __ ______ __ __ * * /\ __-. /\__ _\ /\ == \ /\ \ /\ "-.\ \ /\ \ /\__ _\ /\ \_\ \ * * \ \ \/\ \ \/_/\ \/ \ \ __< \ \ \ \ \ \-. \ \ \ \ \/_/\ \/ \ \____ \ * * \ \____- \ \_\ \ \_\ \_\ \ \_\ \ \_\\"\_\ \ \_\ \ \_\ \/\_____\ * * \/____/ \/_/ \/_/ /_/ \/_/ \/_/ \/_/ \/_/ \/_/ \/_____/ * * * * ————————————————————————————————— dtrinity.org ————————————————————————————————— * * * * ▲ * * ▲ ▲ * * * * ———————————————————————————————————————————————————————————————————————————————— * * dTRINITY Protocol: https://github.com/dtrinity * * ———————————————————————————————————————————————————————————————————————————————— */ pragma solidity ^0.8.20; /** * @title IPriceOracleGetter * @author Aave * @notice Interface for the Aave price oracle. */ interface IPriceOracleGetter { /** * @notice Returns the base currency address * @dev Address 0x0 is reserved for USD as base currency. * @return Returns the base currency address. */ function BASE_CURRENCY() external view returns (address); /** * @notice Returns the base currency unit * @dev 1 ether for ETH, 1e8 for USD. * @return Returns the base currency unit. */ function BASE_CURRENCY_UNIT() external view returns (uint256); /** * @notice Returns the asset price in the base currency * @param asset The address of the asset * @return The price of the asset */ function getAssetPrice(address asset) external view returns (uint256); }
// SPDX-License-Identifier: MIT /* ———————————————————————————————————————————————————————————————————————————————— * * _____ ______ ______ __ __ __ __ ______ __ __ * * /\ __-. /\__ _\ /\ == \ /\ \ /\ "-.\ \ /\ \ /\__ _\ /\ \_\ \ * * \ \ \/\ \ \/_/\ \/ \ \ __< \ \ \ \ \ \-. \ \ \ \ \/_/\ \/ \ \____ \ * * \ \____- \ \_\ \ \_\ \_\ \ \_\ \ \_\\"\_\ \ \_\ \ \_\ \/\_____\ * * \/____/ \/_/ \/_/ /_/ \/_/ \/_/ \/_/ \/_/ \/_/ \/_____/ * * * * ————————————————————————————————— dtrinity.org ————————————————————————————————— * * * * ▲ * * ▲ ▲ * * * * ———————————————————————————————————————————————————————————————————————————————— * * dTRINITY Protocol: https://github.com/dtrinity * * ———————————————————————————————————————————————————————————————————————————————— */ pragma solidity ^0.8.20; import "@openzeppelin/contracts/access/AccessControl.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; import "contracts/common/IAaveOracle.sol"; import "./OracleAware.sol"; /** * @title CollateralVault * @notice Abstract contract for any contract that manages collateral assets \ */ abstract contract CollateralVault is AccessControl, OracleAware { using SafeERC20 for IERC20Metadata; using EnumerableSet for EnumerableSet.AddressSet; /* Core state */ EnumerableSet.AddressSet internal _supportedCollaterals; /* Events */ event CollateralAllowed(address indexed collateralAsset); event CollateralDisallowed(address indexed collateralAsset); /* Roles */ bytes32 public constant COLLATERAL_MANAGER_ROLE = keccak256("COLLATERAL_MANAGER_ROLE"); bytes32 public constant COLLATERAL_STRATEGY_ROLE = keccak256("COLLATERAL_STRATEGY_ROLE"); bytes32 public constant COLLATERAL_WITHDRAWER_ROLE = keccak256("COLLATERAL_WITHDRAWER_ROLE"); /* Errors */ error UnsupportedCollateral(address collateralAsset); error CollateralAlreadyAllowed(address collateralAsset); error NoOracleSupport(address collateralAsset); error FailedToAddCollateral(address collateralAsset); error CollateralNotSupported(address collateralAsset); error MustSupportAtLeastOneCollateral(); error FailedToRemoveCollateral(address collateralAsset); /** * @notice Initializes the vault with an oracle and sets up initial roles * @dev Grants all roles to the contract deployer initially * @param oracle The price oracle to use for collateral valuation */ constructor(IPriceOracleGetter oracle) OracleAware(oracle, oracle.BASE_CURRENCY_UNIT()) { _grantRole(DEFAULT_ADMIN_ROLE, msg.sender); // This is the super admin grantRole(COLLATERAL_MANAGER_ROLE, msg.sender); grantRole(COLLATERAL_WITHDRAWER_ROLE, msg.sender); grantRole(COLLATERAL_STRATEGY_ROLE, msg.sender); } /* Deposit */ /** * @notice Deposit collateral into the vault * @param collateralAmount The amount of collateral to deposit * @param collateralAsset The address of the collateral asset */ function deposit(uint256 collateralAmount, address collateralAsset) public { if (!_supportedCollaterals.contains(collateralAsset)) { revert UnsupportedCollateral(collateralAsset); } IERC20Metadata(collateralAsset).safeTransferFrom(msg.sender, address(this), collateralAmount); } /* Withdrawal */ /** * @notice Withdraws collateral from the vault * @param collateralAmount The amount of collateral to withdraw * @param collateralAsset The address of the collateral asset */ function withdraw(uint256 collateralAmount, address collateralAsset) public onlyRole(COLLATERAL_WITHDRAWER_ROLE) { return _withdraw(msg.sender, collateralAmount, collateralAsset); } /** * @notice Withdraws collateral from the vault to a specific address * @param recipient The address receiving the collateral * @param collateralAmount The amount of collateral to withdraw * @param collateralAsset The address of the collateral asset */ function withdrawTo(address recipient, uint256 collateralAmount, address collateralAsset) public onlyRole(COLLATERAL_WITHDRAWER_ROLE) { return _withdraw(recipient, collateralAmount, collateralAsset); } /** * @notice Internal function to withdraw collateral from the vault * @param withdrawer The address withdrawing the collateral * @param collateralAmount The amount of collateral to withdraw * @param collateralAsset The address of the collateral asset */ function _withdraw(address withdrawer, uint256 collateralAmount, address collateralAsset) internal { IERC20Metadata(collateralAsset).safeTransfer(withdrawer, collateralAmount); } /* Collateral Info */ /** * @notice Calculates the total value of all assets in the vault * @return baseValue The total value of all assets in base */ function totalValue() public view virtual returns (uint256 baseValue); /** * @notice Calculates the base value of a given amount of an asset * @param assetAmount The amount of the asset * @param asset The address of the asset * @return baseValue The base value of the asset */ function assetValueFromAmount(uint256 assetAmount, address asset) public view returns (uint256 baseValue) { uint256 assetPrice = oracle.getAssetPrice(asset); uint8 assetDecimals = IERC20Metadata(asset).decimals(); return Math.mulDiv(assetPrice, assetAmount, 10 ** assetDecimals); } /** * @notice Calculates the amount of an asset that corresponds to a given base value * @param baseValue The base value * @param asset The address of the asset * @return assetAmount The amount of the asset */ function assetAmountFromValue(uint256 baseValue, address asset) public view returns (uint256 assetAmount) { uint256 assetPrice = oracle.getAssetPrice(asset); uint8 assetDecimals = IERC20Metadata(asset).decimals(); return Math.mulDiv(baseValue, 10 ** assetDecimals, assetPrice); } /* Collateral management */ /** * @notice Allows a new collateral asset * @param collateralAsset The address of the collateral asset */ function allowCollateral(address collateralAsset) public onlyRole(COLLATERAL_MANAGER_ROLE) { if (_supportedCollaterals.contains(collateralAsset)) { revert CollateralAlreadyAllowed(collateralAsset); } if (oracle.getAssetPrice(collateralAsset) == 0) { revert NoOracleSupport(collateralAsset); } if (!_supportedCollaterals.add(collateralAsset)) { revert FailedToAddCollateral(collateralAsset); } emit CollateralAllowed(collateralAsset); } /** * @notice Disallows a previously supported collateral asset * @dev Requires at least one collateral asset to remain supported * @param collateralAsset The address of the collateral asset to disallow */ function disallowCollateral(address collateralAsset) public onlyRole(COLLATERAL_MANAGER_ROLE) { if (!_supportedCollaterals.contains(collateralAsset)) { revert CollateralNotSupported(collateralAsset); } if (_supportedCollaterals.length() <= 1) { revert MustSupportAtLeastOneCollateral(); } if (!_supportedCollaterals.remove(collateralAsset)) { revert FailedToRemoveCollateral(collateralAsset); } emit CollateralDisallowed(collateralAsset); } /** * @notice Checks if a given asset is supported as collateral * @param collateralAsset The address of the collateral asset to check * @return bool True if the asset is supported, false otherwise */ function isCollateralSupported(address collateralAsset) public view returns (bool) { return _supportedCollaterals.contains(collateralAsset); } /** * @notice Returns a list of all supported collateral assets * @return address[] Array of collateral asset addresses */ function listCollateral() public view returns (address[] memory) { return _supportedCollaterals.values(); } /** * @notice Calculates the total base value of all supported collateral assets in the vault * @dev Iterates through all supported collaterals and sums their base values * @return uint256 The total value in base */ function _totalValueOfSupportedCollaterals() internal view returns (uint256) { uint256 totalBaseValue = 0; for (uint256 i = 0; i < _supportedCollaterals.length(); i++) { address collateral = _supportedCollaterals.at(i); uint256 collateralPrice = oracle.getAssetPrice(collateral); uint8 collateralDecimals = IERC20Metadata(collateral).decimals(); uint256 collateralValue = Math.mulDiv(collateralPrice, IERC20Metadata(collateral).balanceOf(address(this)), 10 ** collateralDecimals); totalBaseValue += collateralValue; } return totalBaseValue; } }
// SPDX-License-Identifier: MIT /* ———————————————————————————————————————————————————————————————————————————————— * * _____ ______ ______ __ __ __ __ ______ __ __ * * /\ __-. /\__ _\ /\ == \ /\ \ /\ "-.\ \ /\ \ /\__ _\ /\ \_\ \ * * \ \ \/\ \ \/_/\ \/ \ \ __< \ \ \ \ \ \-. \ \ \ \ \/_/\ \/ \ \____ \ * * \ \____- \ \_\ \ \_\ \_\ \ \_\ \ \_\\"\_\ \ \_\ \ \_\ \/\_____\ * * \/____/ \/_/ \/_/ /_/ \/_/ \/_/ \/_/ \/_/ \/_/ \/_____/ * * * * ————————————————————————————————— dtrinity.org ————————————————————————————————— * * * * ▲ * * ▲ ▲ * * * * ———————————————————————————————————————————————————————————————————————————————— * * dTRINITY Protocol: https://github.com/dtrinity * * ———————————————————————————————————————————————————————————————————————————————— */ pragma solidity ^0.8.20; import "@openzeppelin/contracts/access/AccessControl.sol"; import "contracts/common/IAaveOracle.sol"; /** * @title OracleAware * @notice Abstract contract that provides oracle functionality to other contracts */ abstract contract OracleAware is AccessControl { /* Core state */ IPriceOracleGetter public oracle; uint256 public baseCurrencyUnit; /* Events */ event OracleSet(address indexed newOracle); /* Errors */ error IncorrectBaseCurrencyUnit(uint256 baseCurrencyUnit); /** * @notice Initializes the contract with an oracle and base currency unit * @param initialOracle The initial oracle to use for price feeds * @param _baseCurrencyUnit The base currency unit for price calculations * @dev Sets up the initial oracle and base currency unit values */ constructor(IPriceOracleGetter initialOracle, uint256 _baseCurrencyUnit) { oracle = initialOracle; baseCurrencyUnit = _baseCurrencyUnit; _grantRole(DEFAULT_ADMIN_ROLE, msg.sender); } /** * @notice Sets the oracle to use for collateral valuation * @param newOracle The new oracle to use */ function setOracle(IPriceOracleGetter newOracle) public onlyRole(DEFAULT_ADMIN_ROLE) { if (newOracle.BASE_CURRENCY_UNIT() != baseCurrencyUnit) { revert IncorrectBaseCurrencyUnit(baseCurrencyUnit); } oracle = newOracle; emit OracleSet(address(newOracle)); } /** * @notice Updates the base currency unit used for price calculations * @param _newBaseCurrencyUnit The new base currency unit to set * @dev Only used if the oracle's base currency unit changes */ function setBaseCurrencyUnit(uint256 _newBaseCurrencyUnit) public onlyRole(DEFAULT_ADMIN_ROLE) { baseCurrencyUnit = _newBaseCurrencyUnit; } }
{ "evmVersion": "paris", "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IPriceOracleGetter","name":"oracle","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint256","name":"requestedAmount","type":"uint256"},{"internalType":"uint256","name":"maxAmount","type":"uint256"}],"name":"CannotWithdrawMoreValueThanDeposited","type":"error"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"CollateralAlreadyAllowed","type":"error"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"CollateralNotSupported","type":"error"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"FailedToAddCollateral","type":"error"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"FailedToRemoveCollateral","type":"error"},{"inputs":[{"internalType":"uint256","name":"baseCurrencyUnit","type":"uint256"}],"name":"IncorrectBaseCurrencyUnit","type":"error"},{"inputs":[],"name":"MustSupportAtLeastOneCollateral","type":"error"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"NoOracleSupport","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"uint256","name":"toCollateralAmount","type":"uint256"},{"internalType":"uint256","name":"toMinCollateral","type":"uint256"}],"name":"ToCollateralAmountBelowMin","type":"error"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"UnsupportedCollateral","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"collateralAsset","type":"address"}],"name":"CollateralAllowed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"collateralAsset","type":"address"}],"name":"CollateralDisallowed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newOracle","type":"address"}],"name":"OracleSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"COLLATERAL_MANAGER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"COLLATERAL_STRATEGY_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"COLLATERAL_WITHDRAWER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"allowCollateral","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"baseValue","type":"uint256"},{"internalType":"address","name":"asset","type":"address"}],"name":"assetAmountFromValue","outputs":[{"internalType":"uint256","name":"assetAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assetAmount","type":"uint256"},{"internalType":"address","name":"asset","type":"address"}],"name":"assetValueFromAmount","outputs":[{"internalType":"uint256","name":"baseValue","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseCurrencyUnit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"collateralAmount","type":"uint256"},{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"disallowCollateral","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromCollateralAmount","type":"uint256"},{"internalType":"address","name":"fromCollateral","type":"address"},{"internalType":"uint256","name":"toCollateralAmount","type":"uint256"},{"internalType":"address","name":"toCollateral","type":"address"}],"name":"exchangeCollateral","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromCollateralAmount","type":"uint256"},{"internalType":"address","name":"fromCollateral","type":"address"},{"internalType":"address","name":"toCollateral","type":"address"},{"internalType":"uint256","name":"toMinCollateral","type":"uint256"}],"name":"exchangeMaxCollateral","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"isCollateralSupported","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"listCollateral","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromCollateralAmount","type":"uint256"},{"internalType":"address","name":"fromCollateral","type":"address"},{"internalType":"address","name":"toCollateral","type":"address"}],"name":"maxExchangeAmount","outputs":[{"internalType":"uint256","name":"toCollateralAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oracle","outputs":[{"internalType":"contract IPriceOracleGetter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newBaseCurrencyUnit","type":"uint256"}],"name":"setBaseCurrencyUnit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IPriceOracleGetter","name":"newOracle","type":"address"}],"name":"setOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalValue","outputs":[{"internalType":"uint256","name":"baseValue","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"collateralAmount","type":"uint256"},{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"collateralAmount","type":"uint256"},{"internalType":"address","name":"collateralAsset","type":"address"}],"name":"withdrawTo","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60806040523480156200001157600080fd5b5060405162001c4b38038062001c4b8339810160408190526200003491620002b0565b8080816001600160a01b0316638c89b64f6040518163ffffffff1660e01b8152600401602060405180830381865afa15801562000075573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200009b9190620002e2565b600180546001600160a01b0319166001600160a01b0384161790556002819055620000c860003362000167565b50620000da9150600090503362000167565b50620001077f85e8f2d6819d6b24108062d87ea08f54651bcb8960d98062d3faf96e7873b8b93362000216565b620001337f1f29e81ed8f7ae439f042f6b6767d105e87c4eef908508d5d9e550aef35af6443362000216565b6200015f7f1a52e20da533a06a1f80a73dba6e5d09cb788f108eae685b8ce6644834e67abe3362000216565b5050620002fc565b6000828152602081815260408083206001600160a01b038516845290915281205460ff166200020c576000838152602081815260408083206001600160a01b03861684529091529020805460ff19166001179055620001c33390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a450600162000210565b5060005b92915050565b600082815260208190526040902060010154620002338162000245565b6200023f838362000167565b50505050565b62000251813362000254565b50565b6000828152602081815260408083206001600160a01b038516845290915290205460ff16620002ac5760405163e2517d3f60e01b81526001600160a01b03821660048201526024810183905260440160405180910390fd5b5050565b600060208284031215620002c357600080fd5b81516001600160a01b0381168114620002db57600080fd5b9392505050565b600060208284031215620002f557600080fd5b5051919050565b61193f806200030c6000396000f3fe608060405234801561001057600080fd5b50600436106101a85760003560e01c80637adbf973116100f9578063c4e2c1e611610097578063d547741f11610071578063d547741f146103d7578063e00cb4a5146103ea578063f3bddde1146103fd578063fa6bd2ee1461040657600080fd5b8063c4e2c1e6146103a7578063cf07456f146103ba578063d4c3eea0146103cf57600080fd5b8063847b39d7116100d3578063847b39d71461036657806391d1485414610379578063a217fddf1461038c578063a4e2a31e1461039457600080fd5b80637adbf973146103155780637dc0d1d01461032857806383f107771461035357600080fd5b80632f2ff15d1161016657806345daa27b1161014057806345daa27b146102b55780634a0bbabb146102dc5780635c23ef6e146102ef5780636e553f651461030257600080fd5b80632f2ff15d1461027c578063339b55151461028f57806336568abe146102a257600080fd5b8062f714ce146101ad57806301ffc9a7146101c2578063132c29b2146101ea5780631ee903b61461021f578063248a9ca3146102325780632e718ab714610255575b600080fd5b6101c06101bb366004611574565b610419565b005b6101d56101d03660046115a4565b610453565b60405190151581526020015b60405180910390f35b6102117f1a52e20da533a06a1f80a73dba6e5d09cb788f108eae685b8ce6644834e67abe81565b6040519081526020016101e1565b6101c061022d3660046115ce565b61048a565b6102116102403660046115eb565b60009081526020819052604090206001015490565b6102117f85e8f2d6819d6b24108062d87ea08f54651bcb8960d98062d3faf96e7873b8b981565b6101c061028a366004611574565b610581565b6101c061029d366004611604565b6105ac565b6101c06102b0366004611574565b610691565b6102117f1f29e81ed8f7ae439f042f6b6767d105e87c4eef908508d5d9e550aef35af64481565b6101c06102ea3660046115eb565b6106c4565b6102116102fd366004611574565b6106d5565b6101c0610310366004611574565b6107cd565b6101c06103233660046115ce565b610819565b60015461033b906001600160a01b031681565b6040516001600160a01b0390911681526020016101e1565b6101c061036136600461164e565b6108f8565b610211610374366004611696565b610968565b6101d5610387366004611574565b610b59565b610211600081565b6101c06103a23660046115ce565b610b82565b6101c06103b53660046116d8565b610ce4565b6103c2610d19565b6040516101e1919061170f565b610211610d2a565b6101c06103e5366004611574565b610d34565b6102116103f8366004611574565b610d59565b61021160025481565b6101d56104143660046115ce565b610e43565b7f1f29e81ed8f7ae439f042f6b6767d105e87c4eef908508d5d9e550aef35af64461044381610e50565b61044e338484610e5d565b505050565b60006001600160e01b03198216637965db0b60e01b148061048457506301ffc9a760e01b6001600160e01b03198316145b92915050565b7f85e8f2d6819d6b24108062d87ea08f54651bcb8960d98062d3faf96e7873b8b96104b481610e50565b6104bf600383610e71565b6104ec57604051632108722b60e01b81526001600160a01b03831660048201526024015b60405180910390fd5b60016104f86003610e93565b11610516576040516305bc742560e11b815260040160405180910390fd5b610521600383610e9d565b6105495760405163644e3dd760e11b81526001600160a01b03831660048201526024016104e3565b6040516001600160a01b038316907fcebbf63022189259f517d89d98c7c527b44c211d25e443dad13aab2479c7e7b390600090a25050565b60008281526020819052604090206001015461059c81610e50565b6105a68383610eb2565b50505050565b7f1a52e20da533a06a1f80a73dba6e5d09cb788f108eae685b8ce6644834e67abe6105d681610e50565b6105e1600385610e71565b6106265760405162461bcd60e51b8152602060048201526016602482015275155b9cdd5c1c1bdc9d19590818dbdb1b185d195c985b60521b60448201526064016104e3565b6000610633868685610968565b905080841115610660576040516394d08ba760e01b815260048101859052602481018290526044016104e3565b6106756001600160a01b038616333089610f44565b6106896001600160a01b0384163386610fab565b505050505050565b6001600160a01b03811633146106ba5760405163334bd91960e11b815260040160405180910390fd5b61044e8282610fdc565b60006106cf81610e50565b50600255565b60015460405163b3596f0760e01b81526001600160a01b038381166004830152600092839291169063b3596f0790602401602060405180830381865afa158015610723573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610747919061175c565b90506000836001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610789573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107ad9190611775565b90506107c4856107be83600a611892565b84611047565b95945050505050565b6107d8600382610e71565b61080057604051632762993f60e11b81526001600160a01b03821660048201526024016104e3565b6108156001600160a01b038216333085610f44565b5050565b600061082481610e50565b600254826001600160a01b0316638c89b64f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610865573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610889919061175c565b146108ad57600254604051639b6812b960e01b81526004016104e391815260200190565b600180546001600160a01b0319166001600160a01b0384169081179091556040517f3f32684a32a11dabdbb8c0177de80aa3ae36a004d75210335b49e544e48cd0aa90600090a25050565b7f1a52e20da533a06a1f80a73dba6e5d09cb788f108eae685b8ce6644834e67abe61092281610e50565b600061092f868686610968565b90508281101561095c576040516330ff745960e11b815260048101829052602481018490526044016104e3565b610689868683876105ac565b60015460405163b3596f0760e01b81526001600160a01b038481166004830152600092839291169063b3596f0790602401602060405180830381865afa1580156109b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109da919061175c565b60015460405163b3596f0760e01b81526001600160a01b0386811660048301529293506000929091169063b3596f0790602401602060405180830381865afa158015610a2a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a4e919061175c565b90506000856001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a90573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ab49190611775565b90506000856001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610af6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b1a9190611775565b90506000610b33858a610b2e86600a611892565b611047565b9050610b4a81610b4484600a611892565b86611047565b955050505050505b9392505050565b6000918252602082815260408084206001600160a01b0393909316845291905290205460ff1690565b7f85e8f2d6819d6b24108062d87ea08f54651bcb8960d98062d3faf96e7873b8b9610bac81610e50565b610bb7600383610e71565b15610be05760405163098f893f60e21b81526001600160a01b03831660048201526024016104e3565b60015460405163b3596f0760e01b81526001600160a01b0384811660048301529091169063b3596f0790602401602060405180830381865afa158015610c2a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c4e919061175c565b600003610c7957604051631066c96360e31b81526001600160a01b03831660048201526024016104e3565b610c846003836110fc565b610cac5760405163cdb5999560e01b81526001600160a01b03831660048201526024016104e3565b6040516001600160a01b038316907f500f8acd525a3d9f96ab641587f59e34ef9d02f9397fdd46bb7786273bad160790600090a25050565b7f1f29e81ed8f7ae439f042f6b6767d105e87c4eef908508d5d9e550aef35af644610d0e81610e50565b6105a6848484610e5d565b6060610d256003611111565b905090565b6000610d2561111e565b600082815260208190526040902060010154610d4f81610e50565b6105a68383610fdc565b60015460405163b3596f0760e01b81526001600160a01b038381166004830152600092839291169063b3596f0790602401602060405180830381865afa158015610da7573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610dcb919061175c565b90506000836001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e0d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e319190611775565b90506107c48286610b2e84600a611892565b6000610484600383610e71565b610e5a81336112be565b50565b61044e6001600160a01b0382168484610fab565b6001600160a01b03811660009081526001830160205260408120541515610b52565b6000610484825490565b6000610b52836001600160a01b0384166112f7565b6000610ebe8383610b59565b610f3c576000838152602081815260408083206001600160a01b03861684529091529020805460ff19166001179055610ef43390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001610484565b506000610484565b6040516001600160a01b0384811660248301528381166044830152606482018390526105a69186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506113ea565b6040516001600160a01b0383811660248301526044820183905261044e91859182169063a9059cbb90606401610f79565b6000610fe88383610b59565b15610f3c576000838152602081815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a4506001610484565b6000806000611056868661145b565b915091508160000361107b57838181611071576110716118a1565b0492505050610b52565b818411611092576110926003851502601118611479565b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010185841190960395909502919093039390930492909217029150509392505050565b6000610b52836001600160a01b03841661148b565b60606000610b52836114d2565b600080805b61112d6003610e93565b8110156112b857600061114160038361152e565b60015460405163b3596f0760e01b81526001600160a01b0380841660048301529293506000929091169063b3596f0790602401602060405180830381865afa158015611191573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111b5919061175c565b90506000826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111f7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061121b9190611775565b6040516370a0823160e01b815230600482015290915060009061129a9084906001600160a01b038716906370a0823190602401602060405180830381865afa15801561126b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061128f919061175c565b610b2e85600a611892565b90506112a681876118b7565b95505060019093019250611123915050565b50919050565b6112c88282610b59565b6108155760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044016104e3565b600081815260018301602052604081205480156113e057600061131b6001836118ca565b855490915060009061132f906001906118ca565b905080821461139457600086600001828154811061134f5761134f6118dd565b9060005260206000200154905080876000018481548110611372576113726118dd565b6000918252602080832090910192909255918252600188019052604090208390555b85548690806113a5576113a56118f3565b600190038181906000526020600020016000905590558560010160008681526020019081526020016000206000905560019350505050610484565b6000915050610484565b600080602060008451602086016000885af18061140d576040513d6000823e3d81fd5b50506000513d91508115611425578060011415611432565b6001600160a01b0384163b155b156105a657604051635274afe760e01b81526001600160a01b03851660048201526024016104e3565b60008060001983850993909202808410938190039390930393915050565b634e487b71600052806020526024601cfd5b6000818152600183016020526040812054610f3c57508154600181810184556000848152602080822090930184905584548482528286019093526040902091909155610484565b60608160000180548060200260200160405190810160405280929190818152602001828054801561152257602002820191906000526020600020905b81548152602001906001019080831161150e575b50505050509050919050565b6000610b528383600082600001828154811061154c5761154c6118dd565b9060005260206000200154905092915050565b6001600160a01b0381168114610e5a57600080fd5b6000806040838503121561158757600080fd5b8235915060208301356115998161155f565b809150509250929050565b6000602082840312156115b657600080fd5b81356001600160e01b031981168114610b5257600080fd5b6000602082840312156115e057600080fd5b8135610b528161155f565b6000602082840312156115fd57600080fd5b5035919050565b6000806000806080858703121561161a57600080fd5b84359350602085013561162c8161155f565b92506040850135915060608501356116438161155f565b939692955090935050565b6000806000806080858703121561166457600080fd5b8435935060208501356116768161155f565b925060408501356116868161155f565b9396929550929360600135925050565b6000806000606084860312156116ab57600080fd5b8335925060208401356116bd8161155f565b915060408401356116cd8161155f565b809150509250925092565b6000806000606084860312156116ed57600080fd5b83356116f88161155f565b92506020840135915060408401356116cd8161155f565b6020808252825182820181905260009190848201906040850190845b818110156117505783516001600160a01b03168352928401929184019160010161172b565b50909695505050505050565b60006020828403121561176e57600080fd5b5051919050565b60006020828403121561178757600080fd5b815160ff81168114610b5257600080fd5b634e487b7160e01b600052601160045260246000fd5b600181815b808511156117e95781600019048211156117cf576117cf611798565b808516156117dc57918102915b93841c93908002906117b3565b509250929050565b60008261180057506001610484565b8161180d57506000610484565b8160018114611823576002811461182d57611849565b6001915050610484565b60ff84111561183e5761183e611798565b50506001821b610484565b5060208310610133831016604e8410600b841016171561186c575081810a610484565b61187683836117ae565b806000190482111561188a5761188a611798565b029392505050565b6000610b5260ff8416836117f1565b634e487b7160e01b600052601260045260246000fd5b8082018082111561048457610484611798565b8181038181111561048457610484611798565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052603160045260246000fdfea264697066735822122026e037fd2ad262ff6acaf2200350ea165c42439d4d2f63dbe8b1a6c1aac6521d64736f6c63430008160033000000000000000000000000e38f8bceb6f8794e2b025ded1e923f30b58361b3
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106101a85760003560e01c80637adbf973116100f9578063c4e2c1e611610097578063d547741f11610071578063d547741f146103d7578063e00cb4a5146103ea578063f3bddde1146103fd578063fa6bd2ee1461040657600080fd5b8063c4e2c1e6146103a7578063cf07456f146103ba578063d4c3eea0146103cf57600080fd5b8063847b39d7116100d3578063847b39d71461036657806391d1485414610379578063a217fddf1461038c578063a4e2a31e1461039457600080fd5b80637adbf973146103155780637dc0d1d01461032857806383f107771461035357600080fd5b80632f2ff15d1161016657806345daa27b1161014057806345daa27b146102b55780634a0bbabb146102dc5780635c23ef6e146102ef5780636e553f651461030257600080fd5b80632f2ff15d1461027c578063339b55151461028f57806336568abe146102a257600080fd5b8062f714ce146101ad57806301ffc9a7146101c2578063132c29b2146101ea5780631ee903b61461021f578063248a9ca3146102325780632e718ab714610255575b600080fd5b6101c06101bb366004611574565b610419565b005b6101d56101d03660046115a4565b610453565b60405190151581526020015b60405180910390f35b6102117f1a52e20da533a06a1f80a73dba6e5d09cb788f108eae685b8ce6644834e67abe81565b6040519081526020016101e1565b6101c061022d3660046115ce565b61048a565b6102116102403660046115eb565b60009081526020819052604090206001015490565b6102117f85e8f2d6819d6b24108062d87ea08f54651bcb8960d98062d3faf96e7873b8b981565b6101c061028a366004611574565b610581565b6101c061029d366004611604565b6105ac565b6101c06102b0366004611574565b610691565b6102117f1f29e81ed8f7ae439f042f6b6767d105e87c4eef908508d5d9e550aef35af64481565b6101c06102ea3660046115eb565b6106c4565b6102116102fd366004611574565b6106d5565b6101c0610310366004611574565b6107cd565b6101c06103233660046115ce565b610819565b60015461033b906001600160a01b031681565b6040516001600160a01b0390911681526020016101e1565b6101c061036136600461164e565b6108f8565b610211610374366004611696565b610968565b6101d5610387366004611574565b610b59565b610211600081565b6101c06103a23660046115ce565b610b82565b6101c06103b53660046116d8565b610ce4565b6103c2610d19565b6040516101e1919061170f565b610211610d2a565b6101c06103e5366004611574565b610d34565b6102116103f8366004611574565b610d59565b61021160025481565b6101d56104143660046115ce565b610e43565b7f1f29e81ed8f7ae439f042f6b6767d105e87c4eef908508d5d9e550aef35af64461044381610e50565b61044e338484610e5d565b505050565b60006001600160e01b03198216637965db0b60e01b148061048457506301ffc9a760e01b6001600160e01b03198316145b92915050565b7f85e8f2d6819d6b24108062d87ea08f54651bcb8960d98062d3faf96e7873b8b96104b481610e50565b6104bf600383610e71565b6104ec57604051632108722b60e01b81526001600160a01b03831660048201526024015b60405180910390fd5b60016104f86003610e93565b11610516576040516305bc742560e11b815260040160405180910390fd5b610521600383610e9d565b6105495760405163644e3dd760e11b81526001600160a01b03831660048201526024016104e3565b6040516001600160a01b038316907fcebbf63022189259f517d89d98c7c527b44c211d25e443dad13aab2479c7e7b390600090a25050565b60008281526020819052604090206001015461059c81610e50565b6105a68383610eb2565b50505050565b7f1a52e20da533a06a1f80a73dba6e5d09cb788f108eae685b8ce6644834e67abe6105d681610e50565b6105e1600385610e71565b6106265760405162461bcd60e51b8152602060048201526016602482015275155b9cdd5c1c1bdc9d19590818dbdb1b185d195c985b60521b60448201526064016104e3565b6000610633868685610968565b905080841115610660576040516394d08ba760e01b815260048101859052602481018290526044016104e3565b6106756001600160a01b038616333089610f44565b6106896001600160a01b0384163386610fab565b505050505050565b6001600160a01b03811633146106ba5760405163334bd91960e11b815260040160405180910390fd5b61044e8282610fdc565b60006106cf81610e50565b50600255565b60015460405163b3596f0760e01b81526001600160a01b038381166004830152600092839291169063b3596f0790602401602060405180830381865afa158015610723573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610747919061175c565b90506000836001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610789573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107ad9190611775565b90506107c4856107be83600a611892565b84611047565b95945050505050565b6107d8600382610e71565b61080057604051632762993f60e11b81526001600160a01b03821660048201526024016104e3565b6108156001600160a01b038216333085610f44565b5050565b600061082481610e50565b600254826001600160a01b0316638c89b64f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610865573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610889919061175c565b146108ad57600254604051639b6812b960e01b81526004016104e391815260200190565b600180546001600160a01b0319166001600160a01b0384169081179091556040517f3f32684a32a11dabdbb8c0177de80aa3ae36a004d75210335b49e544e48cd0aa90600090a25050565b7f1a52e20da533a06a1f80a73dba6e5d09cb788f108eae685b8ce6644834e67abe61092281610e50565b600061092f868686610968565b90508281101561095c576040516330ff745960e11b815260048101829052602481018490526044016104e3565b610689868683876105ac565b60015460405163b3596f0760e01b81526001600160a01b038481166004830152600092839291169063b3596f0790602401602060405180830381865afa1580156109b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109da919061175c565b60015460405163b3596f0760e01b81526001600160a01b0386811660048301529293506000929091169063b3596f0790602401602060405180830381865afa158015610a2a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a4e919061175c565b90506000856001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610a90573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ab49190611775565b90506000856001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610af6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b1a9190611775565b90506000610b33858a610b2e86600a611892565b611047565b9050610b4a81610b4484600a611892565b86611047565b955050505050505b9392505050565b6000918252602082815260408084206001600160a01b0393909316845291905290205460ff1690565b7f85e8f2d6819d6b24108062d87ea08f54651bcb8960d98062d3faf96e7873b8b9610bac81610e50565b610bb7600383610e71565b15610be05760405163098f893f60e21b81526001600160a01b03831660048201526024016104e3565b60015460405163b3596f0760e01b81526001600160a01b0384811660048301529091169063b3596f0790602401602060405180830381865afa158015610c2a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c4e919061175c565b600003610c7957604051631066c96360e31b81526001600160a01b03831660048201526024016104e3565b610c846003836110fc565b610cac5760405163cdb5999560e01b81526001600160a01b03831660048201526024016104e3565b6040516001600160a01b038316907f500f8acd525a3d9f96ab641587f59e34ef9d02f9397fdd46bb7786273bad160790600090a25050565b7f1f29e81ed8f7ae439f042f6b6767d105e87c4eef908508d5d9e550aef35af644610d0e81610e50565b6105a6848484610e5d565b6060610d256003611111565b905090565b6000610d2561111e565b600082815260208190526040902060010154610d4f81610e50565b6105a68383610fdc565b60015460405163b3596f0760e01b81526001600160a01b038381166004830152600092839291169063b3596f0790602401602060405180830381865afa158015610da7573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610dcb919061175c565b90506000836001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e0d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e319190611775565b90506107c48286610b2e84600a611892565b6000610484600383610e71565b610e5a81336112be565b50565b61044e6001600160a01b0382168484610fab565b6001600160a01b03811660009081526001830160205260408120541515610b52565b6000610484825490565b6000610b52836001600160a01b0384166112f7565b6000610ebe8383610b59565b610f3c576000838152602081815260408083206001600160a01b03861684529091529020805460ff19166001179055610ef43390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001610484565b506000610484565b6040516001600160a01b0384811660248301528381166044830152606482018390526105a69186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506113ea565b6040516001600160a01b0383811660248301526044820183905261044e91859182169063a9059cbb90606401610f79565b6000610fe88383610b59565b15610f3c576000838152602081815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a4506001610484565b6000806000611056868661145b565b915091508160000361107b57838181611071576110716118a1565b0492505050610b52565b818411611092576110926003851502601118611479565b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010185841190960395909502919093039390930492909217029150509392505050565b6000610b52836001600160a01b03841661148b565b60606000610b52836114d2565b600080805b61112d6003610e93565b8110156112b857600061114160038361152e565b60015460405163b3596f0760e01b81526001600160a01b0380841660048301529293506000929091169063b3596f0790602401602060405180830381865afa158015611191573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111b5919061175c565b90506000826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111f7573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061121b9190611775565b6040516370a0823160e01b815230600482015290915060009061129a9084906001600160a01b038716906370a0823190602401602060405180830381865afa15801561126b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061128f919061175c565b610b2e85600a611892565b90506112a681876118b7565b95505060019093019250611123915050565b50919050565b6112c88282610b59565b6108155760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044016104e3565b600081815260018301602052604081205480156113e057600061131b6001836118ca565b855490915060009061132f906001906118ca565b905080821461139457600086600001828154811061134f5761134f6118dd565b9060005260206000200154905080876000018481548110611372576113726118dd565b6000918252602080832090910192909255918252600188019052604090208390555b85548690806113a5576113a56118f3565b600190038181906000526020600020016000905590558560010160008681526020019081526020016000206000905560019350505050610484565b6000915050610484565b600080602060008451602086016000885af18061140d576040513d6000823e3d81fd5b50506000513d91508115611425578060011415611432565b6001600160a01b0384163b155b156105a657604051635274afe760e01b81526001600160a01b03851660048201526024016104e3565b60008060001983850993909202808410938190039390930393915050565b634e487b71600052806020526024601cfd5b6000818152600183016020526040812054610f3c57508154600181810184556000848152602080822090930184905584548482528286019093526040902091909155610484565b60608160000180548060200260200160405190810160405280929190818152602001828054801561152257602002820191906000526020600020905b81548152602001906001019080831161150e575b50505050509050919050565b6000610b528383600082600001828154811061154c5761154c6118dd565b9060005260206000200154905092915050565b6001600160a01b0381168114610e5a57600080fd5b6000806040838503121561158757600080fd5b8235915060208301356115998161155f565b809150509250929050565b6000602082840312156115b657600080fd5b81356001600160e01b031981168114610b5257600080fd5b6000602082840312156115e057600080fd5b8135610b528161155f565b6000602082840312156115fd57600080fd5b5035919050565b6000806000806080858703121561161a57600080fd5b84359350602085013561162c8161155f565b92506040850135915060608501356116438161155f565b939692955090935050565b6000806000806080858703121561166457600080fd5b8435935060208501356116768161155f565b925060408501356116868161155f565b9396929550929360600135925050565b6000806000606084860312156116ab57600080fd5b8335925060208401356116bd8161155f565b915060408401356116cd8161155f565b809150509250925092565b6000806000606084860312156116ed57600080fd5b83356116f88161155f565b92506020840135915060408401356116cd8161155f565b6020808252825182820181905260009190848201906040850190845b818110156117505783516001600160a01b03168352928401929184019160010161172b565b50909695505050505050565b60006020828403121561176e57600080fd5b5051919050565b60006020828403121561178757600080fd5b815160ff81168114610b5257600080fd5b634e487b7160e01b600052601160045260246000fd5b600181815b808511156117e95781600019048211156117cf576117cf611798565b808516156117dc57918102915b93841c93908002906117b3565b509250929050565b60008261180057506001610484565b8161180d57506000610484565b8160018114611823576002811461182d57611849565b6001915050610484565b60ff84111561183e5761183e611798565b50506001821b610484565b5060208310610133831016604e8410600b841016171561186c575081810a610484565b61187683836117ae565b806000190482111561188a5761188a611798565b029392505050565b6000610b5260ff8416836117f1565b634e487b7160e01b600052601260045260246000fd5b8082018082111561048457610484611798565b8181038181111561048457610484611798565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052603160045260246000fdfea264697066735822122026e037fd2ad262ff6acaf2200350ea165c42439d4d2f63dbe8b1a6c1aac6521d64736f6c63430008160033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e38f8bceb6f8794e2b025ded1e923f30b58361b3
-----Decoded View---------------
Arg [0] : oracle (address): 0xE38F8BcEB6F8794e2b025DED1E923f30B58361B3
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000e38f8bceb6f8794e2b025ded1e923f30b58361b3
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.