ETH Price: $4,510.14 (+0.51%)

Contract

0xa3eeA13183421c9A8BDA0BDEe191B70De8CA445D

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ZeroCouponDiscountModel

Compiler Version
v0.8.22+commit.4fc1097e

Optimization Enabled:
No with 200 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.22;

import "openzeppelin-contracts-upgradeable/access/OwnableUpgradeable.sol";
import {IDiscountModel} from "../interfaces/IDiscountModel.sol";
import {LogExpMath} from "../utils/LogExpMath.sol";
import {Math} from "openzeppelin-math/Math.sol";

/**
 * @title ZeroCouponDiscountModel
 * @notice This model calculates the price of a zero coupon bond using the zero coupon bond formula with compounded returns
 */
contract ZeroCouponDiscountModel is IDiscountModel, OwnableUpgradeable {
    using Math for uint256;
    uint256 private constant UNIT = 1e18;
    int256 private constant SECONDS_PER_YEAR = 365 days;

    constructor() {
        _disableInitializers();
    }

    function initialize() external initializer {}

    /// @dev See IDiscountModel.description
    function description() external pure override returns (string memory) {
        return "Discount calculated using the zero coupon bond formula";
    }

    /// @dev See IDiscountModel.getPrice.
    function getPrice(
        uint256 initialImpliedAPY,
        uint256 futurePTValue,
        IDiscountModel.Term memory term
    ) external pure override returns (uint256) {
        uint256 timeLeft = term.expiryTimestamp - term.currentTimestamp;
        if (timeLeft == 0) {
            return futurePTValue;
        }
        int256 t = int256(timeLeft * UNIT) / SECONDS_PER_YEAR;
        int256 unitInt = int256(UNIT);
        int256 base = unitInt + int256(initialImpliedAPY);
        int256 ratePerSecond = LogExpMath.ln(base);
        int256 denominator = LogExpMath.exp((ratePerSecond * t) / unitInt);
        int256 presentValue = (int256(futurePTValue) * unitInt) / denominator;
        return uint256(presentValue);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²56 and mod 2²56 - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²56 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²56. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²56 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²56. Now that denominator is an odd number, it has an inverse modulo 2²56 such
            // that denominator * inv = 1 mod 2²56. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 24.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 28
            inverse *= 2 - denominator * inverse; // inverse mod 2¹6
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 264
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²8
            inverse *= 2 - denominator * inverse; // inverse mod 2²56

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²56. Since the preconditions guarantee that the outcome is
            // less than 2²56, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax = 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) = 1 mod p`. As a consequence, we have `a * a**(p-2) = 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `e_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) = sqrt(a) < 2**e`). We know that `e = 128` because `(2¹²8)² = 2²56` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) = sqrt(a) < 2**e ? (2**(e-1))² = a < (2**e)² ? 2**(2*e-2) = a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) = sqrt(a) < 2**e = 2 * x_n`. This implies e_n = 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to e_n = 2**(e-2).
            // This is going to be our x_0 (and e_0)
            xn = (3 * xn) >> 1; // e_0 := | x_0 - sqrt(a) | = 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n4 + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n4 + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n4 - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              = 0
            // Which proves that for all n = 1, sqrt(a) = x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // e_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | e_n² / (2 * x_n) |
            //         = e_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // e_1 = e_0² / | (2 * x_0) |
            //     = (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     = 2**(2*e-4) / (3 * 2**(e-1))
            //     = 2**(e-3) / 3
            //     = 2**(e-3-log2(3))
            //     = 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) = sqrt(a) = x_n:
            // e_{n+1} = e_n² / | (2 * x_n) |
            //         = (2**(e-k))² / (2 * 2**(e-1))
            //         = 2**(2*e-2*k) / 2**e
            //         = 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // e_1 := | x_1 - sqrt(a) | = 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // e_2 := | x_2 - sqrt(a) | = 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // e_3 := | x_3 - sqrt(a) | = 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // e_4 := | x_4 - sqrt(a) | = 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // e_5 := | x_5 - sqrt(a) | = 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // e_6 := | x_6 - sqrt(a) | = 2**(e-144)  -- general case with k = 72

            // Because e = 128 (as discussed during the first estimation phase), we know have reached a precision
            // e_6 = 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 7 of 9 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.22;

interface IDiscountModel {
    struct Term {
        uint256 startTimestamp;
        uint256 currentTimestamp;
        uint256 expiryTimestamp;
    }
    /**
     * @notice Computes the price for a given principal token.
     * @dev This function can be implemented customly, so not all argumnets need to be used
     *
     * @param initialImpliedAPY The initial implied APY of the principal token (in 18 decimals).
     * @param futurePTValue The future value of the principal token at maturity.
     * @param term Time data for the term of the principal token.
     * @return price The computed price, expressed with futurePTValue's decimals precision.
     */
    function getPrice(
        uint256 initialImpliedAPY,
        uint256 futurePTValue,
        Term memory term
    ) external pure returns (uint256 price);

    /**
     * @notice Returns a human-readable description of the discount model.
     * @return A string describing the discount model.
     */
    function description() external pure returns (string memory);
}

// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.8.0;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

Settings
{
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "appendCBOR": true,
    "bytecodeHash": "ipfs",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
    "openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/",
    "openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/",
    "openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/",
    "openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/",
    "openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/",
    "openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/",
    "config/=lib/spectra-contracts-configs/script/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "spectra-contracts-configs/=lib/spectra-contracts-configs/"
  ],
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"initialImpliedAPY","type":"uint256"},{"internalType":"uint256","name":"futurePTValue","type":"uint256"},{"components":[{"internalType":"uint256","name":"startTimestamp","type":"uint256"},{"internalType":"uint256","name":"currentTimestamp","type":"uint256"},{"internalType":"uint256","name":"expiryTimestamp","type":"uint256"}],"internalType":"struct IDiscountModel.Term","name":"term","type":"tuple"}],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801562000010575f80fd5b50620000216200002760201b60201c565b62000191565b5f620000386200012b60201b60201c565b9050805f0160089054906101000a900460ff161562000083576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b67ffffffffffffffff8016815f015f9054906101000a900467ffffffffffffffff1667ffffffffffffffff1614620001285767ffffffffffffffff815f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d267ffffffffffffffff6040516200011f919062000176565b60405180910390a15b50565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f67ffffffffffffffff82169050919050565b620001708162000152565b82525050565b5f6020820190506200018b5f83018462000165565b92915050565b611a6f806200019f5f395ff3fe608060405234801561000f575f80fd5b5060043610610060575f3560e01c8063715018a6146100645780637284e4161461006e5780638129fc1c1461008c5780638da5cb5b14610096578063f2fde38b146100b4578063f87eba5d146100d0575b5f80fd5b61006c610100565b005b610076610113565b604051610083919061146d565b60405180910390f35b610094610133565b005b61009e6102aa565b6040516100ab91906114cc565b60405180910390f35b6100ce60048036038101906100c9919061151c565b6102df565b005b6100ea60048036038101906100e59190611657565b610363565b6040516100f791906116b6565b60405180910390f35b610108610426565b6101115f6104ad565b565b6060604051806060016040528060368152602001611a0460369139905090565b5f61013c61057e565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff161480156101845750825b90505f60018367ffffffffffffffff161480156101b757505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156101c5575080155b156101fc576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315610249576001855f0160086101000a81548160ff0219169083151502179055505b83156102a3575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2600160405161029a9190611724565b60405180910390a15b5050505050565b5f806102b46105a5565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b6102e7610426565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610357575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161034e91906114cc565b60405180910390fd5b610360816104ad565b50565b5f8082602001518360400151610379919061176a565b90505f810361038b578391505061041f565b5f6301e13380670de0b6b3a7640000836103a5919061179d565b6103af9190611814565b90505f670de0b6b3a764000090505f87826103ca919061187c565b90505f6103d6826105cc565b90505f6103f88486846103e991906118bd565b6103f39190611814565b61067f565b90505f81858b61040891906118bd565b6104129190611814565b9050809750505050505050505b9392505050565b61042e610c7e565b73ffffffffffffffffffffffffffffffffffffffff1661044c6102aa565b73ffffffffffffffffffffffffffffffffffffffff16146104ab5761046f610c7e565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016104a291906114cc565b60405180910390fd5b565b5f6104b66105a5565b90505f815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905082825f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a3505050565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300905090565b5f80821361060f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106069061197d565b60405180910390fd5b8167016345785d8a0000670de0b6b3a764000003128015610641575067016345785d8a0000670de0b6b3a76400000182125b1561066e57670de0b6b3a764000061065883610c85565b81610666576106656117e7565b5b05905061067a565b61067782610e9d565b90505b919050565b5f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000082121580156106b9575068070c1cc73b00c800008213155b6106f8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106ef906119e5565b60405180910390fd5b5f82121561072c5761070b825f0361067f565b670de0b6b3a7640000800281610724576107236117e7565b5b059050610c79565b5f6806f05b59d3b2000000831261076b576806f05b59d3b200000083039250770195e54c5dd42177f53a27172fa9ec63026282700000000090506107a3565b6803782dace9d9000000831261079d576803782dace9d9000000830392506b1425982cf597cd205cef738090506107a2565b600190505b5b6064830292505f68056bc75e2d63100000905068ad78ebc5ac6200000084126108025768ad78ebc5ac620000008403935068056bc75e2d631000006e01855144814a7ff805980ff00840008202816107fe576107fd6117e7565b5b0590505b6856bc75e2d631000000841261084b576856bc75e2d6310000008403935068056bc75e2d631000006b02df0ab5a80a22c61ab5a700820281610847576108466117e7565b5b0590505b682b5e3af16b18800000841261089257682b5e3af16b188000008403935068056bc75e2d63100000693f1fce3da636ea5cf85082028161088e5761088d6117e7565b5b0590505b6815af1d78b58c40000084126108d9576815af1d78b58c4000008403935068056bc75e2d63100000690127fa27722cc06cc5e28202816108d5576108d46117e7565b5b0590505b680ad78ebc5ac6200000841261091f57680ad78ebc5ac62000008403935068056bc75e2d6310000068280e60114edb805d0382028161091b5761091a6117e7565b5b0590505b68056bc75e2d6310000084126109655768056bc75e2d631000008403935068056bc75e2d63100000680ebc5fb41746121110820281610961576109606117e7565b5b0590505b6802b5e3af16b188000084126109ab576802b5e3af16b18800008403935068056bc75e2d631000006808f00f760a4b2db55d8202816109a7576109a66117e7565b5b0590505b68015af1d78b58c4000084126109f15768015af1d78b58c400008403935068056bc75e2d631000006806f5f17757889379378202816109ed576109ec6117e7565b5b0590505b5f68056bc75e2d6310000090505f8590508082019150600268056bc75e2d6310000087830281610a2457610a236117e7565b5b0581610a3357610a326117e7565b5b0590508082019150600368056bc75e2d6310000087830281610a5857610a576117e7565b5b0581610a6757610a666117e7565b5b0590508082019150600468056bc75e2d6310000087830281610a8c57610a8b6117e7565b5b0581610a9b57610a9a6117e7565b5b0590508082019150600568056bc75e2d6310000087830281610ac057610abf6117e7565b5b0581610acf57610ace6117e7565b5b0590508082019150600668056bc75e2d6310000087830281610af457610af36117e7565b5b0581610b0357610b026117e7565b5b0590508082019150600768056bc75e2d6310000087830281610b2857610b276117e7565b5b0581610b3757610b366117e7565b5b0590508082019150600868056bc75e2d6310000087830281610b5c57610b5b6117e7565b5b0581610b6b57610b6a6117e7565b5b0590508082019150600968056bc75e2d6310000087830281610b9057610b8f6117e7565b5b0581610b9f57610b9e6117e7565b5b0590508082019150600a68056bc75e2d6310000087830281610bc457610bc36117e7565b5b0581610bd357610bd26117e7565b5b0590508082019150600b68056bc75e2d6310000087830281610bf857610bf76117e7565b5b0581610c0757610c066117e7565b5b0590508082019150600c68056bc75e2d6310000087830281610c2c57610c2b6117e7565b5b0581610c3b57610c3a6117e7565b5b059050808201915060648468056bc75e2d6310000084860281610c6157610c606117e7565b5b050281610c7157610c706117e7565b5b059450505050505b919050565b5f33905090565b5f670de0b6b3a7640000820291505f6ec097ce7bc90715b34b9f100000000083016ec097ce7bc90715b34b9f10000000008085030281610cc857610cc76117e7565b5b0590505f6ec097ce7bc90715b34b9f100000000082830281610ced57610cec6117e7565b5b0590505f8290505f8190506ec097ce7bc90715b34b9f100000000083830281610d1957610d186117e7565b5b05915060038281610d2d57610d2c6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d5357610d526117e7565b5b05915060058281610d6757610d666117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d8d57610d8c6117e7565b5b05915060078281610da157610da06117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610dc757610dc66117e7565b5b05915060098281610ddb57610dda6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e0157610e006117e7565b5b059150600b8281610e1557610e146117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e3b57610e3a6117e7565b5b059150600d8281610e4f57610e4e6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e7557610e746117e7565b5b059150600f8281610e8957610e886117e7565b5b058101905060028102945050505050919050565b5f670de0b6b3a7640000821215610eda57610ed182670de0b6b3a7640000800281610ecb57610eca6117e7565b5b05610e9d565b5f0390506113de565b5f670de0b6b3a7640000770195e54c5dd42177f53a27172fa9ec630262827000000000028312610f3e57770195e54c5dd42177f53a27172fa9ec6302628270000000008381610f2c57610f2b6117e7565b5b0592506806f05b59d3b2000000810190505b670de0b6b3a76400006b1425982cf597cd205cef7380028312610f89576b1425982cf597cd205cef73808381610f7757610f766117e7565b5b0592506803782dace9d9000000810190505b6064810290506064830292506e01855144814a7ff805980ff00840008312610fe7576e01855144814a7ff805980ff008400068056bc75e2d63100000840281610fd557610fd46117e7565b5b05925068ad78ebc5ac62000000810190505b6b02df0ab5a80a22c61ab5a7008312611033576b02df0ab5a80a22c61ab5a70068056bc75e2d63100000840281611021576110206117e7565b5b0592506856bc75e2d631000000810190505b693f1fce3da636ea5cf850831261107b57693f1fce3da636ea5cf85068056bc75e2d63100000840281611069576110686117e7565b5b059250682b5e3af16b18800000810190505b690127fa27722cc06cc5e283126110c357690127fa27722cc06cc5e268056bc75e2d631000008402816110b1576110b06117e7565b5b0592506815af1d78b58c400000810190505b68280e60114edb805d0383126111095768280e60114edb805d0368056bc75e2d631000008402816110f7576110f66117e7565b5b059250680ad78ebc5ac6200000810190505b680ebc5fb41746121110831261114f57680ebc5fb4174612111068056bc75e2d6310000084028161113d5761113c6117e7565b5b05925068056bc75e2d63100000810190505b6808f00f760a4b2db55d8312611195576808f00f760a4b2db55d68056bc75e2d63100000840281611183576111826117e7565b5b0592506802b5e3af16b1880000810190505b6806f5f177578893793783126111db576806f5f177578893793768056bc75e2d631000008402816111c9576111c86117e7565b5b05925068015af1d78b58c40000810190505b6806248f33704b2866038312611220576806248f33704b28660368056bc75e2d6310000084028161120f5761120e6117e7565b5b05925067ad78ebc5ac620000810190505b6805c548670b9510e7ac8312611265576805c548670b9510e7ac68056bc75e2d63100000840281611254576112536117e7565b5b0592506756bc75e2d6310000810190505b5f68056bc75e2d63100000840168056bc75e2d63100000808603028161128e5761128d6117e7565b5b0590505f68056bc75e2d63100000828302816112ad576112ac6117e7565b5b0590505f8290505f81905068056bc75e2d63100000838302816112d3576112d26117e7565b5b059150600382816112e7576112e66117e7565b5b058101905068056bc75e2d6310000083830281611307576113066117e7565b5b0591506005828161131b5761131a6117e7565b5b058101905068056bc75e2d631000008383028161133b5761133a6117e7565b5b0591506007828161134f5761134e6117e7565b5b058101905068056bc75e2d631000008383028161136f5761136e6117e7565b5b05915060098281611383576113826117e7565b5b058101905068056bc75e2d63100000838302816113a3576113a26117e7565b5b059150600b82816113b7576113b66117e7565b5b05810190506002810290506064818601816113d5576113d46117e7565b5b05955050505050505b919050565b5f81519050919050565b5f82825260208201905092915050565b5f5b8381101561141a5780820151818401526020810190506113ff565b5f8484015250505050565b5f601f19601f8301169050919050565b5f61143f826113e3565b61144981856113ed565b93506114598185602086016113fd565b61146281611425565b840191505092915050565b5f6020820190508181035f8301526114858184611435565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6114b68261148d565b9050919050565b6114c6816114ac565b82525050565b5f6020820190506114df5f8301846114bd565b92915050565b5f604051905090565b5f80fd5b6114fb816114ac565b8114611505575f80fd5b50565b5f81359050611516816114f2565b92915050565b5f60208284031215611531576115306114ee565b5b5f61153e84828501611508565b91505092915050565b5f819050919050565b61155981611547565b8114611563575f80fd5b50565b5f8135905061157481611550565b92915050565b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6115b482611425565b810181811067ffffffffffffffff821117156115d3576115d261157e565b5b80604052505050565b5f6115e56114e5565b90506115f182826115ab565b919050565b5f6060828403121561160b5761160a61157a565b5b61161560606115dc565b90505f61162484828501611566565b5f83015250602061163784828501611566565b602083015250604061164b84828501611566565b60408301525092915050565b5f805f60a0848603121561166e5761166d6114ee565b5b5f61167b86828701611566565b935050602061168c86828701611566565b925050604061169d868287016115f6565b9150509250925092565b6116b081611547565b82525050565b5f6020820190506116c95f8301846116a7565b92915050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f61170e611709611704846116cf565b6116eb565b6116d8565b9050919050565b61171e816116f4565b82525050565b5f6020820190506117375f830184611715565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61177482611547565b915061177f83611547565b92508282039050818111156117975761179661173d565b5b92915050565b5f6117a782611547565b91506117b283611547565b92508282026117c081611547565b915082820484148315176117d7576117d661173d565b5b5092915050565b5f819050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61181e826117de565b9150611829836117de565b925082611839576118386117e7565b5b60015f0383147f8000000000000000000000000000000000000000000000000000000000000000831416156118715761187061173d565b5b828205905092915050565b5f611886826117de565b9150611891836117de565b92508282019050828112155f8312168382125f8412151617156118b7576118b661173d565b5b92915050565b5f6118c7826117de565b91506118d2836117de565b92508282026118e0816117de565b91507f800000000000000000000000000000000000000000000000000000000000000084145f841216156119175761191661173d565b5b828205841483151761192c5761192b61173d565b5b5092915050565b7f6f7574206f6620626f756e6473000000000000000000000000000000000000005f82015250565b5f611967600d836113ed565b915061197282611933565b602082019050919050565b5f6020820190508181035f8301526119948161195b565b9050919050565b7f496e76616c6964206578706f6e656e74000000000000000000000000000000005f82015250565b5f6119cf6010836113ed565b91506119da8261199b565b602082019050919050565b5f6020820190508181035f8301526119fc816119c3565b905091905056fe446973636f756e742063616c63756c61746564207573696e6720746865207a65726f20636f75706f6e20626f6e6420666f726d756c61a264697066735822122019b4a284924dc3862ecea723c60f8550547da392396f287950662652b61661f564736f6c63430008160033

Deployed Bytecode

0x608060405234801561000f575f80fd5b5060043610610060575f3560e01c8063715018a6146100645780637284e4161461006e5780638129fc1c1461008c5780638da5cb5b14610096578063f2fde38b146100b4578063f87eba5d146100d0575b5f80fd5b61006c610100565b005b610076610113565b604051610083919061146d565b60405180910390f35b610094610133565b005b61009e6102aa565b6040516100ab91906114cc565b60405180910390f35b6100ce60048036038101906100c9919061151c565b6102df565b005b6100ea60048036038101906100e59190611657565b610363565b6040516100f791906116b6565b60405180910390f35b610108610426565b6101115f6104ad565b565b6060604051806060016040528060368152602001611a0460369139905090565b5f61013c61057e565b90505f815f0160089054906101000a900460ff161590505f825f015f9054906101000a900467ffffffffffffffff1690505f808267ffffffffffffffff161480156101845750825b90505f60018367ffffffffffffffff161480156101b757505f3073ffffffffffffffffffffffffffffffffffffffff163b145b9050811580156101c5575080155b156101fc576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6001855f015f6101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055508315610249576001855f0160086101000a81548160ff0219169083151502179055505b83156102a3575f855f0160086101000a81548160ff0219169083151502179055507fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2600160405161029a9190611724565b60405180910390a15b5050505050565b5f806102b46105a5565b9050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1691505090565b6102e7610426565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610357575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161034e91906114cc565b60405180910390fd5b610360816104ad565b50565b5f8082602001518360400151610379919061176a565b90505f810361038b578391505061041f565b5f6301e13380670de0b6b3a7640000836103a5919061179d565b6103af9190611814565b90505f670de0b6b3a764000090505f87826103ca919061187c565b90505f6103d6826105cc565b90505f6103f88486846103e991906118bd565b6103f39190611814565b61067f565b90505f81858b61040891906118bd565b6104129190611814565b9050809750505050505050505b9392505050565b61042e610c7e565b73ffffffffffffffffffffffffffffffffffffffff1661044c6102aa565b73ffffffffffffffffffffffffffffffffffffffff16146104ab5761046f610c7e565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016104a291906114cc565b60405180910390fd5b565b5f6104b66105a5565b90505f815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905082825f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508273ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a3505050565b5f7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00905090565b5f7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300905090565b5f80821361060f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106069061197d565b60405180910390fd5b8167016345785d8a0000670de0b6b3a764000003128015610641575067016345785d8a0000670de0b6b3a76400000182125b1561066e57670de0b6b3a764000061065883610c85565b81610666576106656117e7565b5b05905061067a565b61067782610e9d565b90505b919050565b5f7ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000082121580156106b9575068070c1cc73b00c800008213155b6106f8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106ef906119e5565b60405180910390fd5b5f82121561072c5761070b825f0361067f565b670de0b6b3a7640000800281610724576107236117e7565b5b059050610c79565b5f6806f05b59d3b2000000831261076b576806f05b59d3b200000083039250770195e54c5dd42177f53a27172fa9ec63026282700000000090506107a3565b6803782dace9d9000000831261079d576803782dace9d9000000830392506b1425982cf597cd205cef738090506107a2565b600190505b5b6064830292505f68056bc75e2d63100000905068ad78ebc5ac6200000084126108025768ad78ebc5ac620000008403935068056bc75e2d631000006e01855144814a7ff805980ff00840008202816107fe576107fd6117e7565b5b0590505b6856bc75e2d631000000841261084b576856bc75e2d6310000008403935068056bc75e2d631000006b02df0ab5a80a22c61ab5a700820281610847576108466117e7565b5b0590505b682b5e3af16b18800000841261089257682b5e3af16b188000008403935068056bc75e2d63100000693f1fce3da636ea5cf85082028161088e5761088d6117e7565b5b0590505b6815af1d78b58c40000084126108d9576815af1d78b58c4000008403935068056bc75e2d63100000690127fa27722cc06cc5e28202816108d5576108d46117e7565b5b0590505b680ad78ebc5ac6200000841261091f57680ad78ebc5ac62000008403935068056bc75e2d6310000068280e60114edb805d0382028161091b5761091a6117e7565b5b0590505b68056bc75e2d6310000084126109655768056bc75e2d631000008403935068056bc75e2d63100000680ebc5fb41746121110820281610961576109606117e7565b5b0590505b6802b5e3af16b188000084126109ab576802b5e3af16b18800008403935068056bc75e2d631000006808f00f760a4b2db55d8202816109a7576109a66117e7565b5b0590505b68015af1d78b58c4000084126109f15768015af1d78b58c400008403935068056bc75e2d631000006806f5f17757889379378202816109ed576109ec6117e7565b5b0590505b5f68056bc75e2d6310000090505f8590508082019150600268056bc75e2d6310000087830281610a2457610a236117e7565b5b0581610a3357610a326117e7565b5b0590508082019150600368056bc75e2d6310000087830281610a5857610a576117e7565b5b0581610a6757610a666117e7565b5b0590508082019150600468056bc75e2d6310000087830281610a8c57610a8b6117e7565b5b0581610a9b57610a9a6117e7565b5b0590508082019150600568056bc75e2d6310000087830281610ac057610abf6117e7565b5b0581610acf57610ace6117e7565b5b0590508082019150600668056bc75e2d6310000087830281610af457610af36117e7565b5b0581610b0357610b026117e7565b5b0590508082019150600768056bc75e2d6310000087830281610b2857610b276117e7565b5b0581610b3757610b366117e7565b5b0590508082019150600868056bc75e2d6310000087830281610b5c57610b5b6117e7565b5b0581610b6b57610b6a6117e7565b5b0590508082019150600968056bc75e2d6310000087830281610b9057610b8f6117e7565b5b0581610b9f57610b9e6117e7565b5b0590508082019150600a68056bc75e2d6310000087830281610bc457610bc36117e7565b5b0581610bd357610bd26117e7565b5b0590508082019150600b68056bc75e2d6310000087830281610bf857610bf76117e7565b5b0581610c0757610c066117e7565b5b0590508082019150600c68056bc75e2d6310000087830281610c2c57610c2b6117e7565b5b0581610c3b57610c3a6117e7565b5b059050808201915060648468056bc75e2d6310000084860281610c6157610c606117e7565b5b050281610c7157610c706117e7565b5b059450505050505b919050565b5f33905090565b5f670de0b6b3a7640000820291505f6ec097ce7bc90715b34b9f100000000083016ec097ce7bc90715b34b9f10000000008085030281610cc857610cc76117e7565b5b0590505f6ec097ce7bc90715b34b9f100000000082830281610ced57610cec6117e7565b5b0590505f8290505f8190506ec097ce7bc90715b34b9f100000000083830281610d1957610d186117e7565b5b05915060038281610d2d57610d2c6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d5357610d526117e7565b5b05915060058281610d6757610d666117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610d8d57610d8c6117e7565b5b05915060078281610da157610da06117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610dc757610dc66117e7565b5b05915060098281610ddb57610dda6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e0157610e006117e7565b5b059150600b8281610e1557610e146117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e3b57610e3a6117e7565b5b059150600d8281610e4f57610e4e6117e7565b5b05810190506ec097ce7bc90715b34b9f100000000083830281610e7557610e746117e7565b5b059150600f8281610e8957610e886117e7565b5b058101905060028102945050505050919050565b5f670de0b6b3a7640000821215610eda57610ed182670de0b6b3a7640000800281610ecb57610eca6117e7565b5b05610e9d565b5f0390506113de565b5f670de0b6b3a7640000770195e54c5dd42177f53a27172fa9ec630262827000000000028312610f3e57770195e54c5dd42177f53a27172fa9ec6302628270000000008381610f2c57610f2b6117e7565b5b0592506806f05b59d3b2000000810190505b670de0b6b3a76400006b1425982cf597cd205cef7380028312610f89576b1425982cf597cd205cef73808381610f7757610f766117e7565b5b0592506803782dace9d9000000810190505b6064810290506064830292506e01855144814a7ff805980ff00840008312610fe7576e01855144814a7ff805980ff008400068056bc75e2d63100000840281610fd557610fd46117e7565b5b05925068ad78ebc5ac62000000810190505b6b02df0ab5a80a22c61ab5a7008312611033576b02df0ab5a80a22c61ab5a70068056bc75e2d63100000840281611021576110206117e7565b5b0592506856bc75e2d631000000810190505b693f1fce3da636ea5cf850831261107b57693f1fce3da636ea5cf85068056bc75e2d63100000840281611069576110686117e7565b5b059250682b5e3af16b18800000810190505b690127fa27722cc06cc5e283126110c357690127fa27722cc06cc5e268056bc75e2d631000008402816110b1576110b06117e7565b5b0592506815af1d78b58c400000810190505b68280e60114edb805d0383126111095768280e60114edb805d0368056bc75e2d631000008402816110f7576110f66117e7565b5b059250680ad78ebc5ac6200000810190505b680ebc5fb41746121110831261114f57680ebc5fb4174612111068056bc75e2d6310000084028161113d5761113c6117e7565b5b05925068056bc75e2d63100000810190505b6808f00f760a4b2db55d8312611195576808f00f760a4b2db55d68056bc75e2d63100000840281611183576111826117e7565b5b0592506802b5e3af16b1880000810190505b6806f5f177578893793783126111db576806f5f177578893793768056bc75e2d631000008402816111c9576111c86117e7565b5b05925068015af1d78b58c40000810190505b6806248f33704b2866038312611220576806248f33704b28660368056bc75e2d6310000084028161120f5761120e6117e7565b5b05925067ad78ebc5ac620000810190505b6805c548670b9510e7ac8312611265576805c548670b9510e7ac68056bc75e2d63100000840281611254576112536117e7565b5b0592506756bc75e2d6310000810190505b5f68056bc75e2d63100000840168056bc75e2d63100000808603028161128e5761128d6117e7565b5b0590505f68056bc75e2d63100000828302816112ad576112ac6117e7565b5b0590505f8290505f81905068056bc75e2d63100000838302816112d3576112d26117e7565b5b059150600382816112e7576112e66117e7565b5b058101905068056bc75e2d6310000083830281611307576113066117e7565b5b0591506005828161131b5761131a6117e7565b5b058101905068056bc75e2d631000008383028161133b5761133a6117e7565b5b0591506007828161134f5761134e6117e7565b5b058101905068056bc75e2d631000008383028161136f5761136e6117e7565b5b05915060098281611383576113826117e7565b5b058101905068056bc75e2d63100000838302816113a3576113a26117e7565b5b059150600b82816113b7576113b66117e7565b5b05810190506002810290506064818601816113d5576113d46117e7565b5b05955050505050505b919050565b5f81519050919050565b5f82825260208201905092915050565b5f5b8381101561141a5780820151818401526020810190506113ff565b5f8484015250505050565b5f601f19601f8301169050919050565b5f61143f826113e3565b61144981856113ed565b93506114598185602086016113fd565b61146281611425565b840191505092915050565b5f6020820190508181035f8301526114858184611435565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6114b68261148d565b9050919050565b6114c6816114ac565b82525050565b5f6020820190506114df5f8301846114bd565b92915050565b5f604051905090565b5f80fd5b6114fb816114ac565b8114611505575f80fd5b50565b5f81359050611516816114f2565b92915050565b5f60208284031215611531576115306114ee565b5b5f61153e84828501611508565b91505092915050565b5f819050919050565b61155981611547565b8114611563575f80fd5b50565b5f8135905061157481611550565b92915050565b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6115b482611425565b810181811067ffffffffffffffff821117156115d3576115d261157e565b5b80604052505050565b5f6115e56114e5565b90506115f182826115ab565b919050565b5f6060828403121561160b5761160a61157a565b5b61161560606115dc565b90505f61162484828501611566565b5f83015250602061163784828501611566565b602083015250604061164b84828501611566565b60408301525092915050565b5f805f60a0848603121561166e5761166d6114ee565b5b5f61167b86828701611566565b935050602061168c86828701611566565b925050604061169d868287016115f6565b9150509250925092565b6116b081611547565b82525050565b5f6020820190506116c95f8301846116a7565b92915050565b5f819050919050565b5f67ffffffffffffffff82169050919050565b5f819050919050565b5f61170e611709611704846116cf565b6116eb565b6116d8565b9050919050565b61171e816116f4565b82525050565b5f6020820190506117375f830184611715565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61177482611547565b915061177f83611547565b92508282039050818111156117975761179661173d565b5b92915050565b5f6117a782611547565b91506117b283611547565b92508282026117c081611547565b915082820484148315176117d7576117d661173d565b5b5092915050565b5f819050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61181e826117de565b9150611829836117de565b925082611839576118386117e7565b5b60015f0383147f8000000000000000000000000000000000000000000000000000000000000000831416156118715761187061173d565b5b828205905092915050565b5f611886826117de565b9150611891836117de565b92508282019050828112155f8312168382125f8412151617156118b7576118b661173d565b5b92915050565b5f6118c7826117de565b91506118d2836117de565b92508282026118e0816117de565b91507f800000000000000000000000000000000000000000000000000000000000000084145f841216156119175761191661173d565b5b828205841483151761192c5761192b61173d565b5b5092915050565b7f6f7574206f6620626f756e6473000000000000000000000000000000000000005f82015250565b5f611967600d836113ed565b915061197282611933565b602082019050919050565b5f6020820190508181035f8301526119948161195b565b9050919050565b7f496e76616c6964206578706f6e656e74000000000000000000000000000000005f82015250565b5f6119cf6010836113ed565b91506119da8261199b565b602082019050919050565b5f6020820190508181035f8301526119fc816119c3565b905091905056fe446973636f756e742063616c63756c61746564207573696e6720746865207a65726f20636f75706f6e20626f6e6420666f726d756c61a264697066735822122019b4a284924dc3862ecea723c60f8550547da392396f287950662652b61661f564736f6c63430008160033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.