Overview
ETH Balance
ETH Value
$0.00Latest 1 from a total of 1 transactions
| Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Nominate New Own... | 1850959 | 192 days ago | IN | 0 ETH | 0 |
View more zero value Internal Transactions in Advanced View mode
Cross-Chain Transactions
Contract Source Code Verified (Exact Match)
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25
pragma solidity ^0.8.25;
import {Math} from "openzeppelin-contracts/utils/math/Math.sol";
import {Owned} from "src/utils/Owned.sol";
import {ScaleUtils, Scale} from "src/lib/euler/ScaleUtils.sol";
import {BaseAdapter, Errors} from "../BaseAdapter.sol";
import {IPushOracle, Price} from "src/interfaces/IPushOracle.sol";
/**
* @title PushOracle
* @author RedVeil
* @notice A simple oracle that allows for setting prices for base/quote pairs by permissioned entities
* @dev The safety and reliability of these prices must be handled by other contracts/infrastructure
*/
contract PushOracle is BaseAdapter, Owned {
string public constant name = "PushOracle";
/// @dev base => quote => price
mapping(address => mapping(address => Price)) public prices;
event PriceUpdated(
address base,
address quote,
uint256 bqPrice,
uint256 qbPrice,
uint256 targetBqPrice,
uint256 targetQbPrice,
uint256 changePerBlock
);
error Misconfigured();
constructor(address _owner) Owned(_owner) {}
/*//////////////////////////////////////////////////////////////
SET PRICE LOGIC
//////////////////////////////////////////////////////////////*/
/**
* @notice Set the price of a base/quote pair
* @param base The base asset
* @param quote The quote asset
* @param bqPrice The price of the base in terms of the quote
* @param qbPrice The price of the quote in terms of the base
*/
function setPrice(
address base,
address quote,
uint256 bqPrice,
uint256 qbPrice
) external onlyOwner {
_setPrice(base, quote, bqPrice, qbPrice);
}
/**
* @notice Set the prices of multiple base/quote pairs
* @param bases The base assets
* @param quotes The quote assets
* @param bqPrices The prices of the bases in terms of the quotes
* @param qbPrices The prices of the quotes in terms of the bases
* @dev The lengths of the arrays must be the same
*/
function setPrices(
address[] memory bases,
address[] memory quotes,
uint256[] memory bqPrices,
uint256[] memory qbPrices
) external onlyOwner checkLength(bases.length, quotes.length) {
_checkLength(bases.length, bqPrices.length);
_checkLength(bases.length, qbPrices.length);
for (uint256 i = 0; i < bases.length; i++) {
_setPrice(bases[i], quotes[i], bqPrices[i], qbPrices[i]);
}
}
/// @dev Internal function to set the price of a base/quote pair
function _setPrice(
address base,
address quote,
uint256 bqPrice,
uint256 qbPrice
) internal {
// Both prices must be set
if ((bqPrice == 0 && qbPrice != 0) || (qbPrice == 0 && bqPrice != 0))
revert Misconfigured();
prices[base][quote] = Price({
price: bqPrice,
targetPrice: bqPrice,
changePerBlock: 0,
lastUpdatedBlock: block.number,
increase: false
});
prices[quote][base] = Price({
price: qbPrice,
targetPrice: qbPrice,
changePerBlock: 0,
lastUpdatedBlock: block.number,
increase: false
});
emit PriceUpdated(base, quote, bqPrice, qbPrice, bqPrice, qbPrice, 0);
}
/*//////////////////////////////////////////////////////////////
SET PRICE OVER TIME LOGIC
//////////////////////////////////////////////////////////////*/
/**
* @notice Set the price of a base/quote pair
* @param base The base asset
* @param quote The quote asset
* @param bqTargetPrice The target price of the base in terms of the quote
* @param qbTargetPrice The target price of the quote in terms of the base
* @param changePerBlock The price increase per block
* @param increase Whether the price is increasing or decreasing
*/
function setPriceOverTime(
address base,
address quote,
uint256 bqTargetPrice,
uint256 qbTargetPrice,
uint256 changePerBlock,
bool increase
) external onlyOwner {
_setPriceOverTime(
base,
quote,
bqTargetPrice,
qbTargetPrice,
changePerBlock,
increase
);
}
/**
* @notice Set the prices of multiple base/quote pairs
* @param bases The base assets
* @param quotes The quote assets
* @param bqTargetPrices The target prices of the bases in terms of the quotes
* @param qbTargetPrices The target prices of the quotes in terms of the bases
* @param changesPerBlock The price increases per block
* @param increases Whether the price is increasing or decreasing
* @dev The lengths of the arrays must be the same
*/
function setPricesOverTime(
address[] memory bases,
address[] memory quotes,
uint256[] memory bqTargetPrices,
uint256[] memory qbTargetPrices,
uint256[] memory changesPerBlock,
bool[] memory increases
) external onlyOwner checkLength(bases.length, quotes.length) {
_checkLength(bases.length, bqTargetPrices.length);
_checkLength(bases.length, qbTargetPrices.length);
_checkLength(bases.length, changesPerBlock.length);
_checkLength(bases.length, increases.length);
for (uint256 i = 0; i < bases.length; i++) {
_setPriceOverTime(
bases[i],
quotes[i],
bqTargetPrices[i],
qbTargetPrices[i],
changesPerBlock[i],
increases[i]
);
}
}
/// @dev Internal function to set the price of a base/quote pair
function _setPriceOverTime(
address base,
address quote,
uint256 bqTargetPrice,
uint256 qbTargetPrice,
uint256 changePerBlock,
bool increase
) internal {
// Both prices must be set
if (
(bqTargetPrice == 0 && qbTargetPrice != 0) ||
(qbTargetPrice == 0 && bqTargetPrice != 0) ||
(changePerBlock == 0)
) revert Misconfigured();
uint256 bqPrice = _getCurrentPrice(base, quote);
uint256 qbPrice = _getCurrentPrice(quote, base);
if (bqPrice == 0 || qbPrice == 0) revert Misconfigured();
if (increase) {
if (bqPrice > bqTargetPrice) revert Misconfigured();
} else {
if (bqPrice < bqTargetPrice) revert Misconfigured();
}
prices[base][quote] = Price({
price: bqPrice,
targetPrice: bqTargetPrice,
changePerBlock: changePerBlock,
lastUpdatedBlock: block.number,
increase: increase
});
prices[quote][base] = Price({
price: qbPrice,
targetPrice: qbTargetPrice,
changePerBlock: changePerBlock,
lastUpdatedBlock: block.number,
increase: !increase
});
emit PriceUpdated(
base,
quote,
bqPrice,
qbPrice,
bqTargetPrice,
qbTargetPrice,
changePerBlock
);
}
/*//////////////////////////////////////////////////////////////
QUOTE LOGIC
//////////////////////////////////////////////////////////////*/
function getCurrentPrice(
address base,
address quote
) public view returns (uint256) {
return _getCurrentPrice(base, quote);
}
function _getCurrentPrice(
address base,
address quote
) internal view returns (uint256) {
Price memory price = prices[base][quote];
if (price.changePerBlock == 0 || price.lastUpdatedBlock == block.number)
return price.price;
uint256 change = price.changePerBlock *
(block.number - price.lastUpdatedBlock);
uint256 newPrice = price.price + change;
if (price.increase) {
return newPrice > price.targetPrice ? price.targetPrice : newPrice;
} else {
newPrice = change > price.price ? 0 : price.price - change;
return newPrice < price.targetPrice ? price.targetPrice : newPrice;
}
}
/// @dev Internal function to get the quote amount for a given base amount
function _getQuote(
uint256 inAmount,
address base,
address quote
) internal view override returns (uint256) {
uint256 price = _getCurrentPrice(base, quote);
if (price == 0) revert Errors.PriceOracle_NotSupported(base, quote);
uint8 baseDecimals = _getDecimals(base);
uint8 quoteDecimals = _getDecimals(quote);
Scale scale = ScaleUtils.calcScale(baseDecimals, quoteDecimals, 18);
return ScaleUtils.calcOutAmount(inAmount, price, scale, false);
}
/*//////////////////////////////////////////////////////////////
UTILS
//////////////////////////////////////////////////////////////*/
/// @dev Modifier to check the lengths of two arrays
modifier checkLength(uint256 lengthA, uint256 lengthB) {
_checkLength(lengthA, lengthB);
_;
}
/// @dev Internal function to check the lengths of two arrays
function _checkLength(uint256 lengthA, uint256 lengthB) internal pure {
if (lengthA != lengthB) revert Misconfigured();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, shl(0xe0, 0x4e487b71))
mstore(0x04, code)
revert(0x00, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²56 and mod 2²56 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²56 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²56. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²56 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²56. Now that denominator is an odd number, it has an inverse modulo 2²56 such
// that denominator * inv = 1 mod 2²56. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 24.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 28
inverse *= 2 - denominator * inverse; // inverse mod 2¹6
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 264
inverse *= 2 - denominator * inverse; // inverse mod 2¹²8
inverse *= 2 - denominator * inverse; // inverse mod 2²56
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²56. Since the preconditions guarantee that the outcome is
// less than 2²56, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax = 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
/// @solidity memory-safe-assembly
assembly {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `e_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) = sqrt(a) < 2**e`). We know that `e = 128` because `(2¹²8)² = 2²56` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) = sqrt(a) < 2**e ? (2**(e-1))² = a < (2**e)² ? 2**(2*e-2) = a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) = sqrt(a) < 2**e = 2 * x_n`. This implies e_n = 2**(e-1).
//
// We can refine our estimation by noticing that the the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to e_n = 2**(e-2).
// This is going to be our x_0 (and e_0)
xn = (3 * xn) >> 1; // e_0 := | x_0 - sqrt(a) | = 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n4 + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n4 + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n4 - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// = 0
// Which proves that for all n = 1, sqrt(a) = x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// e_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | e_n² / (2 * x_n) |
// = e_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// e_1 = e_0² / | (2 * x_0) |
// = (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// = 2**(2*e-4) / (3 * 2**(e-1))
// = 2**(e-3) / 3
// = 2**(e-3-log2(3))
// = 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) = sqrt(a) = x_n:
// e_{n+1} = e_n² / | (2 * x_n) |
// = (2**(e-k))² / (2 * 2**(e-1))
// = 2**(2*e-2*k) / 2**e
// = 2**(e-2*k)
xn = (xn + a / xn) >> 1; // e_1 := | x_1 - sqrt(a) | = 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // e_2 := | x_2 - sqrt(a) | = 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // e_3 := | x_3 - sqrt(a) | = 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // e_4 := | x_4 - sqrt(a) | = 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // e_5 := | x_5 - sqrt(a) | = 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // e_6 := | x_6 - sqrt(a) | = 2**(e-144) -- general case with k = 72
// Because e = 128 (as discussed during the first estimation phase), we know have reached a precision
// e_6 = 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error ExpOverflow();
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error FactorialOverflow();
/// @dev The operation failed, due to an overflow.
error RPowOverflow();
/// @dev The mantissa is too big to fit.
error MantissaOverflow();
/// @dev The operation failed, due to an multiplication overflow.
error MulWadFailed();
/// @dev The operation failed, due to an multiplication overflow.
error SMulWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error DivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error SDivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error MulDivFailed();
/// @dev The division failed, as the denominator is zero.
error DivFailed();
/// @dev The full precision multiply-divide operation failed, either due
/// to the result being larger than 256 bits, or a division by a zero.
error FullMulDivFailed();
/// @dev The output is undefined, as the input is less-than-or-equal to zero.
error LnWadUndefined();
/// @dev The input outside the acceptable domain.
error OutOfDomain();
/*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/
/// @dev The scalar of ETH and most ERC20s.
uint256 internal constant WAD = 1e18;
/*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
/* SIMPLIFIED FIXED POINT OPERATIONS */
/*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if mul(y, gt(x, div(not(0), y))) {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up.
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if mul(y, gt(x, div(not(0), y))) {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, WAD)
// Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) {
mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up.
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
/// Note: This function is an approximation.
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Using `ln(x)` means `x` must be greater than 0.
return expWad((lnWad(x) * y) / int256(WAD));
}
/// @dev Returns `exp(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2p.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is less than 0.5 we return zero.
// This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
if (x <= -41446531673892822313) return r;
/// @solidity memory-safe-assembly
assembly {
// When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
// an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ˜ 135`.
if iszero(slt(x, 135305999368893231589)) {
mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
revert(0x1c, 0x04)
}
}
// `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5 ** 18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
x = x - k * 54916777467707473351141471128;
// `k` is in the range `[-61, 195]`.
// Evaluate using a (6, 7)-term rational approximation.
// `p` is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already `2**96` too large.
r := sdiv(p, q)
}
// r should be in the range `(0.09, 0.25) * 2**96`.
// We now need to multiply r by:
// - The scale factor `s ˜ 6.031367120`.
// - The `2**k` factor from the range reduction.
// - The `1e18 / 2**96` factor for base conversion.
// We do this all at once, with an intermediate result in `2**213`
// basis, so the final right shift is always by a positive amount.
r = int256(
(uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
);
}
}
/// @dev Returns `ln(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2p.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function lnWad(int256 x) internal pure returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
// We do this by multiplying by `2**96 / 10**18`. But since
// `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
// and add `ln(2**96 / 10**18)` at the end.
// Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// We place the check here for more optimal stack operations.
if iszero(sgt(x, 0)) {
mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
revert(0x1c, 0x04)
}
// forgefmt: disable-next-item
r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
x := shr(159, shl(r, x))
// Evaluate using a (8, 8)-term rational approximation.
// `p` is made monic, we will multiply by a scale factor later.
// forgefmt: disable-next-item
let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
sar(96, mul(add(43456485725739037958740375743393,
sar(96, mul(add(24828157081833163892658089445524,
sar(96, mul(add(3273285459638523848632254066296,
x), x))), x))), x)), 11111509109440967052023855526967)
p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
// `q` is monic by convention.
let q := add(5573035233440673466300451813936, x)
q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
q := add(909429971244387300277376558375, sar(96, mul(x, q)))
// `p / q` is in the range `(0, 0.125) * 2**96`.
// Finalization, we need to:
// - Multiply by the scale factor `s = 5.549…`.
// - Add `ln(2**96 / 10**18)`.
// - Add `k * ln(2)`.
// - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already `2**96` too large.
p := sdiv(p, q)
// Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
p := mul(1677202110996718588342820967067443963516166, p)
// Add `ln(2) * k * 5**18 * 2**192`.
// forgefmt: disable-next-item
p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
// Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
// Base conversion: mul `2**18 / 2**192`.
r := sar(174, p)
}
}
/// @dev Returns `W_0(x)`, denominated in `WAD`.
/// See: https://en.wikipedia.org/wiki/Lambert_W_function
/// a.k.a. Product log function. This is an approximation of the principal branch.
/// Note: This function is an approximation. Monotonically increasing.
function lambertW0Wad(int256 x) internal pure returns (int256 w) {
// forgefmt: disable-next-item
unchecked {
if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
int256 wad = int256(WAD);
int256 p = x;
uint256 c; // Whether we need to avoid catastrophic cancellation.
uint256 i = 4; // Number of iterations.
if (w <= 0x1ffffffffffff) {
if (-0x4000000000000 <= w) {
i = 1; // Inputs near zero only take one step to converge.
} else if (w <= -0x3ffffffffffffff) {
i = 32; // Inputs near `-1/e` take very long to converge.
}
} else if (uint256(w >> 63) == uint256(0)) {
/// @solidity memory-safe-assembly
assembly {
// Inline log2 for more performance, since the range is small.
let v := shr(49, w)
let l := shl(3, lt(0xff, v))
l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
c := gt(l, 60)
i := add(2, add(gt(l, 53), c))
}
} else {
int256 ll = lnWad(w = lnWad(w));
/// @solidity memory-safe-assembly
assembly {
// `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
i := add(3, iszero(shr(68, x)))
c := iszero(shr(143, x))
}
if (c == uint256(0)) {
do { // If `x` is big, use Newton's so that intermediate values won't overflow.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := mul(w, div(e, wad))
w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
}
if (p <= w) break;
p = w;
} while (--i != uint256(0));
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
return w;
}
}
do { // Otherwise, use Halley's for faster convergence.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := add(w, wad)
let s := sub(mul(w, e), mul(x, wad))
w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
}
if (p <= w) break;
p = w;
} while (--i != c);
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
// For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
// R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
if (c != uint256(0)) {
int256 t = w | 1;
/// @solidity memory-safe-assembly
assembly {
x := sdiv(mul(x, wad), t)
}
x = (t * (wad + lnWad(x)));
/// @solidity memory-safe-assembly
assembly {
w := sdiv(x, add(wad, t))
}
}
}
}
/*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
/* GENERAL NUMBER UTILITIES */
/*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Remco Bloemen under MIT license: https://2p.com/21/muldiv
function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
// 512-bit multiply `[p1 p0] = x * y`.
// Compute the product mod `2**256` and mod `2**256 - 1`
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that `product = p1 * 2**256 + p0`.
// Temporarily use `result` as `p0` to save gas.
result := mul(x, y) // Lower 256 bits of `x * y`.
for {} 1 {} {
// If overflows.
if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.
/*------------------- 512 by 256 division --------------------*/
// Make division exact by subtracting the remainder from `[p1 p0]`.
let r := mulmod(x, y, d) // Compute remainder using mulmod.
let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
// Make sure the result is less than `2**256`. Also prevents `d == 0`.
// Placing the check here seems to give more optimal stack operations.
if iszero(gt(d, p1)) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
d := div(d, t) // Divide `d` by `t`, which is a power of two.
// Invert `d mod 2**256`
// Now that `d` is an odd number, it has an inverse
// modulo `2**256` such that `d * inv = 1 mod 2**256`.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, `d * inv = 1 mod 2**4`.
let inv := xor(2, mul(3, d))
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
result :=
mul(
// Divide [p1 p0] by the factors of two.
// Shift in bits from `p1` into `p0`. For this we need
// to flip `t` such that it is `2**256 / t`.
or(
mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
div(sub(result, r), t)
),
mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
)
break
}
result := div(result, d)
break
}
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
/// Performs the full 512 bit calculation regardless.
function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
result := mul(x, y)
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(result, lt(mm, result)))
let t := and(d, sub(0, d))
let r := mulmod(x, y, d)
d := div(d, t)
let inv := xor(2, mul(3, d))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
result :=
mul(
or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
mul(sub(2, mul(d, inv)), inv)
)
}
}
/// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Uniswap-v3-core under MIT license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
result = fullMulDiv(x, y, d);
/// @solidity memory-safe-assembly
assembly {
if mulmod(x, y, d) {
result := add(result, 1)
if iszero(result) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Returns `floor(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := div(z, d)
}
}
/// @dev Returns `ceil(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(z, d))), div(z, d))
}
}
/// @dev Returns `ceil(x / d)`.
/// Reverts if `d` is zero.
function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
if iszero(d) {
mstore(0x00, 0x65244e4e) // `DivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(x, d))), div(x, d))
}
}
/// @dev Returns `max(0, x - y)`.
function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
/// Reverts if the computation overflows.
function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
if x {
z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
let half := shr(1, b) // Divide `b` by 2.
// Divide `y` by 2 every iteration.
for { y := shr(1, y) } y { y := shr(1, y) } {
let xx := mul(x, x) // Store x squared.
let xxRound := add(xx, half) // Round to the nearest number.
// Revert if `xx + half` overflowed, or if `x ** 2` overflows.
if or(lt(xxRound, xx), shr(128, x)) {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
x := div(xxRound, b) // Set `x` to scaled `xxRound`.
// If `y` is odd:
if and(y, 1) {
let zx := mul(z, x) // Compute `z * x`.
let zxRound := add(zx, half) // Round to the nearest number.
// If `z * x` overflowed or `zx + half` overflowed:
if or(xor(div(zx, x), z), lt(zxRound, zx)) {
// Revert if `x` is non-zero.
if x {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
}
z := div(zxRound, b) // Return properly scaled `zxRound`.
}
}
}
}
}
/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
// but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffffff, shr(r, x))))
z := shl(shr(1, r), z)
// Goal was to get `z*z*y` within a small factor of `x`. More iterations could
// get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
// We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
// That's not possible if `x < 256` but we can just verify those cases exhaustively.
// Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
// Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
// Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
// For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
// is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
// with largest error when `s = 1` and when `s = 256` or `1/256`.
// Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
// Then we can estimate `sqrt(y)` using
// `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
// There is no overflow risk here since `y < 2**136` after the first branch above.
z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If `x+1` is a perfect square, the Babylonian method cycles between
// `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
z := sub(z, lt(div(x, z), z))
}
}
/// @dev Returns the cube root of `x`, rounded down.
/// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
/// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
function cbrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := sub(z, lt(div(x, mul(z, z)), z))
}
}
/// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
function sqrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
z = (1 + sqrt(x)) * 10 ** 9;
z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
}
/// @solidity memory-safe-assembly
assembly {
z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1)))
}
}
/// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
function cbrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
z = (1 + cbrt(x)) * 10 ** 12;
z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
}
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(sub(exp(10, 36), 2), sub(mulmod(mul(z, z), z, x), 1))) {
// forgefmt: disable-next-item
z := sub(z, eq(mulmod(mul(z, z), z, sub(x, 1)),
add(exp(10, 36), mulmod(mul(z, z), z, x))))
}
}
}
/// @dev Returns the factorial of `x`.
function factorial(uint256 x) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(x, 58)) {
mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
revert(0x1c, 0x04)
}
for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) }
}
}
/// @dev Returns the log2 of `x`.
/// Equivalent to computing the index of the most significant bit (MSB) of `x`.
/// Returns 0 if `x` is zero.
function log2(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000))
}
}
/// @dev Returns the log2 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log2Up(uint256 x) internal pure returns (uint256 r) {
r = log2(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(r, 1), x))
}
}
/// @dev Returns the log10 of `x`.
/// Returns 0 if `x` is zero.
function log10(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(x, 100000000000000000000000000000000000000)) {
x := div(x, 100000000000000000000000000000000000000)
r := 38
}
if iszero(lt(x, 100000000000000000000)) {
x := div(x, 100000000000000000000)
r := add(r, 20)
}
if iszero(lt(x, 10000000000)) {
x := div(x, 10000000000)
r := add(r, 10)
}
if iszero(lt(x, 100000)) {
x := div(x, 100000)
r := add(r, 5)
}
r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
}
}
/// @dev Returns the log10 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log10Up(uint256 x) internal pure returns (uint256 r) {
r = log10(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(exp(10, r), x))
}
}
/// @dev Returns the log256 of `x`.
/// Returns 0 if `x` is zero.
function log256(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(shr(3, r), lt(0xff, shr(r, x)))
}
}
/// @dev Returns the log256 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log256Up(uint256 x) internal pure returns (uint256 r) {
r = log256(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(shl(3, r), 1), x))
}
}
/// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
/// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
/// @solidity memory-safe-assembly
assembly {
mantissa := x
if mantissa {
if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
mantissa := div(mantissa, 1000000000000000000000000000000000)
exponent := 33
}
if iszero(mod(mantissa, 10000000000000000000)) {
mantissa := div(mantissa, 10000000000000000000)
exponent := add(exponent, 19)
}
if iszero(mod(mantissa, 1000000000000)) {
mantissa := div(mantissa, 1000000000000)
exponent := add(exponent, 12)
}
if iszero(mod(mantissa, 1000000)) {
mantissa := div(mantissa, 1000000)
exponent := add(exponent, 6)
}
if iszero(mod(mantissa, 10000)) {
mantissa := div(mantissa, 10000)
exponent := add(exponent, 4)
}
if iszero(mod(mantissa, 100)) {
mantissa := div(mantissa, 100)
exponent := add(exponent, 2)
}
if iszero(mod(mantissa, 10)) {
mantissa := div(mantissa, 10)
exponent := add(exponent, 1)
}
}
}
}
/// @dev Convenience function for packing `x` into a smaller number using `sci`.
/// The `mantissa` will be in bits [7..255] (the upper 249 bits).
/// The `exponent` will be in bits [0..6] (the lower 7 bits).
/// Use `SafeCastLib` to safely ensure that the `packed` number is small
/// enough to fit in the desired unsigned integer type:
/// ```
/// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
/// ```
function packSci(uint256 x) internal pure returns (uint256 packed) {
(x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
/// @solidity memory-safe-assembly
assembly {
if shr(249, x) {
mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
revert(0x1c, 0x04)
}
packed := or(shl(7, x), packed)
}
}
/// @dev Convenience function for unpacking a packed number from `packSci`.
function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
unchecked {
unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
}
}
/// @dev Returns the average of `x` and `y`.
function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = (x & y) + ((x ^ y) >> 1);
}
}
/// @dev Returns the average of `x` and `y`.
function avg(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @dev Returns the absolute value of `x`.
function abs(int256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(sar(255, x), add(sar(255, x), x))
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(mul(xor(sub(y, x), sub(x, y)), gt(x, y)), sub(y, x))
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(int256 x, int256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), lt(y, x)))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), slt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), gt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), sgt(y, x)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(uint256 x, uint256 minValue, uint256 maxValue)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
}
}
/// @dev Returns greatest common divisor of `x` and `y`.
function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
for { z := x } y {} {
let t := y
y := mod(z, y)
z := t
}
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// Reverts if `begin` equals `end` (due to division by zero).
function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
internal
pure
returns (uint256)
{
if (begin >= end) {
t = ~t;
begin = ~begin;
end = ~end;
}
if (t <= begin) return a;
if (t >= end) return b;
unchecked {
if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
return a - fullMulDiv(a - b, t - begin, end - begin);
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// Reverts if `begin` equals `end` (due to division by zero).
function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
internal
pure
returns (int256)
{
if (begin >= end) {
t = int256(~uint256(t));
begin = int256(~uint256(begin));
end = int256(~uint256(end));
}
if (t <= begin) return a;
if (t >= end) return b;
// forgefmt: disable-next-item
unchecked {
if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b) - uint256(a),
uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
return int256(uint256(a) - fullMulDiv(uint256(a) - uint256(b),
uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
}
}
/*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
/* RAW NUMBER OPERATIONS */
/*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(x, y)
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mod(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := smod(x, y)
}
}
/// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := addmod(x, y, d)
}
}
/// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mulmod(x, y, d)
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.8.0; /// @title IPriceOracle /// @custom:security-contact [email protected] /// @author Euler Labs (https://www.eulerlabs.com/) /// @notice Common PriceOracle interface. interface IPriceOracle { /// @notice Get the name of the oracle. /// @return The name of the oracle. function name() external view returns (string memory); /// @notice One-sided price: How much quote token you would get for inAmount of base token, assuming no price spread. /// @param inAmount The amount of `base` to convert. /// @param base The token that is being priced. /// @param quote The token that is the unit of account. /// @return outAmount The amount of `quote` that is equivalent to `inAmount` of `base`. function getQuote( uint256 inAmount, address base, address quote ) external view returns (uint256 outAmount); /// @notice Two-sided price: How much quote token you would get/spend for selling/buying inAmount of base token. /// @param inAmount The amount of `base` to convert. /// @param base The token that is being priced. /// @param quote The token that is the unit of account. /// @return bidOutAmount The amount of `quote` you would get for selling `inAmount` of `base`. /// @return askOutAmount The amount of `quote` you would spend for buying `inAmount` of `base`. function getQuotes( uint256 inAmount, address base, address quote ) external view returns (uint256 bidOutAmount, uint256 askOutAmount); }
// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25
pragma solidity ^0.8.25;
import {IPriceOracle} from "./IPriceOracle.sol";
struct Price {
uint256 price;
uint256 targetPrice;
uint256 changePerBlock;
uint256 lastUpdatedBlock;
bool increase;
}
interface IPushOracle is IPriceOracle {
function setPrice(
address base,
address quote,
uint256 bqPrice,
uint256 qbPrice
) external;
function setPrices(
address[] memory bases,
address[] memory quotes,
uint256[] memory bqPrices,
uint256[] memory qbPrices
) external;
function prices(
address base,
address quote
) external view returns (Price memory);
function setPriceOverTime(
address base,
address quote,
uint256 bqTargetPrice,
uint256 qbTargetPrice,
uint256 changePerBlock,
bool increase
) external;
function setPricesOverTime(
address[] memory bases,
address[] memory quotes,
uint256[] memory bqTargetPrices,
uint256[] memory qbTargetPrices,
uint256[] memory changePerBlocks,
bool[] memory increases
) external;
function getCurrentPrice(
address base,
address quote
) external view returns (uint256);
}// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.25; /// @title Errors /// @custom:security-contact [email protected] /// @author Euler Labs (https://www.eulerlabs.com/) /// @notice Collects common errors in PriceOracles. library Errors { /// @notice The external feed returned an invalid answer. error PriceOracle_InvalidAnswer(); /// @notice The configuration parameters for the PriceOracle are invalid. error PriceOracle_InvalidConfiguration(); /// @notice The base/quote path is not supported. /// @param base The address of the base asset. /// @param quote The address of the quote asset. error PriceOracle_NotSupported(address base, address quote); /// @notice The quote cannot be completed due to overflow. error PriceOracle_Overflow(); /// @notice The price is too stale. /// @param staleness The time elapsed since the price was updated. /// @param maxStaleness The maximum time elapsed since the last price update. error PriceOracle_TooStale(uint256 staleness, uint256 maxStaleness); /// @notice The method can only be called by the governor. error Governance_CallerNotGovernor(); }
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol";
import {Errors} from "./Errors.sol";
type Scale is uint256;
/// @title ScaleUtils
/// @custom:security-contact [email protected]
/// @author Euler Labs (https://www.eulerlabs.com/)
/// @notice Utilities for handling decimal conversion of unit price feeds.
library ScaleUtils {
uint256 internal constant PRICE_SCALE_MASK = 0x00000000000000000000000000000000ffffffffffffffffffffffffffffffff;
/// @notice The maximum allowed exponent for Scale components.
/// @dev 38 is the largest integer exponent of 10 that fits in 128 bits.
uint256 internal constant MAX_EXPONENT = 38;
/// @notice Create a `Scale` by packing 2 powers of 10.
/// @dev Upper 128 bits occupied by 10^feedExponent.
/// Lower 128 bits occupied by 10^priceExponent.
/// @param priceExponent The power for `priceScale = 10**priceExponent`.
/// @param feedExponent The power for `feedScale = 10**feedExponent`.
/// @return The two scale factors packed in `Scale`.
function from(uint8 priceExponent, uint8 feedExponent) internal pure returns (Scale) {
if (priceExponent > MAX_EXPONENT || feedExponent > MAX_EXPONENT) {
revert Errors.PriceOracle_Overflow();
}
return Scale.wrap((10 ** feedExponent << 128) | 10 ** priceExponent);
}
/// @notice Calculate the direction of pricing, or revert if no match.
/// @param givenBase The base asset supplied by the caller.
/// @param base The base asset in the price oracle adapter.
/// @param givenQuote The quote asset supplied by the caller.
/// @param quote The quote asset in the price oracle adapter.
/// @return False if base/quote, true if quote/base else revert.
function getDirectionOrRevert(address givenBase, address base, address givenQuote, address quote)
internal
pure
returns (bool)
{
if (givenBase == base && givenQuote == quote) return false;
if (givenBase == quote && givenQuote == base) return true;
revert Errors.PriceOracle_NotSupported(givenBase, givenQuote);
}
/// @notice Calculate the scale factors for converting a unit price.
/// @param baseDecimals The decimals of the base asset.
/// @param quoteDecimals The decimals of the quote asset.
/// @param feedDecimals The decimals of the feed, already incorporated into the price.
/// @return The scale factors used for price conversions.
function calcScale(uint8 baseDecimals, uint8 quoteDecimals, uint8 feedDecimals) internal pure returns (Scale) {
return from(quoteDecimals, feedDecimals + baseDecimals);
}
/// @notice Convert the price by applying scale factors.
/// @param inAmount The amount of `base` to convert.
/// @param unitPrice The unit price reported by the feed.
/// @param scale The scale factors returned by `calcScale`.
/// @param inverse Whether to price base/quote or quote/base.
/// @return The resulting outAmount.
function calcOutAmount(uint256 inAmount, uint256 unitPrice, Scale scale, bool inverse)
internal
pure
returns (uint256)
{
uint256 priceScale = Scale.unwrap(scale) & PRICE_SCALE_MASK;
uint256 feedScale = Scale.unwrap(scale) >> 128;
if (inverse) {
// (inAmount * feedScale) / (priceScale * unitPrice)
return FixedPointMathLib.fullMulDiv(inAmount, feedScale, priceScale * unitPrice);
} else {
// (inAmount * priceScale * unitPrice) / feedScale
return FixedPointMathLib.fullMulDiv(inAmount, priceScale * unitPrice, feedScale);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;
import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IPriceOracle} from "src/interfaces/IPriceOracle.sol";
import {Errors} from "src/lib/euler/Errors.sol";
import {ScaleUtils, Scale} from "src/lib/euler/ScaleUtils.sol";
/// @title BaseAdapter
/// @custom:security-contact [email protected]
/// @author Euler Labs (https://www.eulerlabs.com/)
/// @notice Abstract adapter with virtual bid/ask pricing.
abstract contract BaseAdapter is IPriceOracle {
/// @inheritdoc IPriceOracle
function getQuote(uint256 inAmount, address base, address quote) external view returns (uint256) {
return _getQuote(inAmount, base, quote);
}
/// @inheritdoc IPriceOracle
/// @dev Does not support true bid/ask pricing.
function getQuotes(uint256 inAmount, address base, address quote) external view returns (uint256, uint256) {
uint256 outAmount = _getQuote(inAmount, base, quote);
return (outAmount, outAmount);
}
/// @notice Call `decimals()`, falling back to 18 decimals.
/// @param asset ERC20 token address or other asset.
/// @dev Oracles can use ERC-7535, ISO 4217 or other conventions to represent non-ERC20 assets as addresses.
/// Integrator Note: `_getDecimals` will return 18 if `asset` is:
/// - an EOA or a to-be-deployed contract (which may implement `decimals()` after deployment).
/// - a contract that does not implement `decimals()`.
/// @return The decimals of the asset.
function _getDecimals(address asset) internal view returns (uint8) {
(bool success, bytes memory data) = address(asset).staticcall(abi.encodeCall(IERC20Metadata.decimals, ()));
return success && data.length == 32 ? abi.decode(data, (uint8)) : 18;
}
/// @notice Return the quote for the given price query.
/// @dev Must be overridden in the inheriting contract.
function _getQuote(uint256, address, address) internal view virtual returns (uint256);
}// SPDX-License-Identifier: GPL-3.0
// Docgen-SOLC: 0.8.25
pragma solidity ^0.8.25;
// https://docs.synthetix.io/contracts/source/contracts/owned
contract Owned {
address public owner;
address public nominatedOwner;
event OwnerNominated(address newOwner);
event OwnerChanged(address oldOwner, address newOwner);
constructor(address _owner) {
require(_owner != address(0), "Owned/owner-zero");
owner = _owner;
emit OwnerChanged(address(0), _owner);
}
function nominateNewOwner(address _owner) external virtual onlyOwner {
nominatedOwner = _owner;
emit OwnerNominated(_owner);
}
function acceptOwnership() external virtual {
require(
msg.sender == nominatedOwner,
"Owned/not-nominated"
);
emit OwnerChanged(owner, nominatedOwner);
owner = nominatedOwner;
nominatedOwner = address(0);
}
modifier onlyOwner() {
_onlyOwner();
_;
}
function _onlyOwner() private view {
require(
msg.sender == owner,
"Owned/not-owner"
);
}
}{
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"appendCBOR": true,
"bytecodeHash": "ipfs",
"useLiteralContent": false
},
"optimizer": {
"enabled": true,
"runs": 20000
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": [
"ds-test/=lib/forge-std/lib/ds-test/src/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"solmate/=lib/solmate/src/",
"safe-smart-account/=lib/safe-smart-account/contracts/",
"weiroll/=lib/weiroll/contracts/",
"solady/=lib/solady/src/",
"bitlib/=lib/solidity-bytes-utils/contracts/",
"ERC-7540/=lib/ERC-7540-Reference/src/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"@pyth/=lib/euler-price-oracle/lib/pyth-sdk-solidity/",
"@redstone/evm-connector/=lib/euler-price-oracle/lib/redstone-oracles-monorepo/packages/evm-connector/contracts/",
"@solady/=lib/euler-price-oracle/lib/solady/src/",
"@uniswap/v3-core/=lib/euler-price-oracle/lib/v3-core/",
"@uniswap/v3-periphery/=lib/euler-price-oracle/lib/v3-periphery/",
"ERC-7540-Reference/=lib/ERC-7540-Reference/src/",
"devtools/=lib/devtools/packages/toolbox-foundry/src/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"euler-price-oracle/=lib/euler-price-oracle/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"layerzero-v2/=lib/layerzero-v2/",
"openzeppelin/=lib/euler-price-oracle/lib/openzeppelin-contracts/contracts/",
"pyth-sdk-solidity/=lib/euler-price-oracle/lib/pyth-sdk-solidity/",
"redstone-oracles-monorepo/=lib/euler-price-oracle/lib/",
"solidity-bytes-utils/=lib/solidity-bytes-utils/contracts/",
"v3-core/=lib/v3-core/",
"v3-periphery/=lib/v3-periphery/contracts/"
],
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Misconfigured","type":"error"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"PriceOracle_NotSupported","type":"error"},{"inputs":[],"name":"PriceOracle_Overflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerNominated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"base","type":"address"},{"indexed":false,"internalType":"address","name":"quote","type":"address"},{"indexed":false,"internalType":"uint256","name":"bqPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"qbPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"targetBqPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"targetQbPrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"changePerBlock","type":"uint256"}],"name":"PriceUpdated","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"getCurrentPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"inAmount","type":"uint256"},{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"getQuote","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"inAmount","type":"uint256"},{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"}],"name":"getQuotes","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"nominateNewOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"nominatedOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"prices","outputs":[{"internalType":"uint256","name":"price","type":"uint256"},{"internalType":"uint256","name":"targetPrice","type":"uint256"},{"internalType":"uint256","name":"changePerBlock","type":"uint256"},{"internalType":"uint256","name":"lastUpdatedBlock","type":"uint256"},{"internalType":"bool","name":"increase","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"},{"internalType":"uint256","name":"bqPrice","type":"uint256"},{"internalType":"uint256","name":"qbPrice","type":"uint256"}],"name":"setPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"},{"internalType":"address","name":"quote","type":"address"},{"internalType":"uint256","name":"bqTargetPrice","type":"uint256"},{"internalType":"uint256","name":"qbTargetPrice","type":"uint256"},{"internalType":"uint256","name":"changePerBlock","type":"uint256"},{"internalType":"bool","name":"increase","type":"bool"}],"name":"setPriceOverTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"bases","type":"address[]"},{"internalType":"address[]","name":"quotes","type":"address[]"},{"internalType":"uint256[]","name":"bqPrices","type":"uint256[]"},{"internalType":"uint256[]","name":"qbPrices","type":"uint256[]"}],"name":"setPrices","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"bases","type":"address[]"},{"internalType":"address[]","name":"quotes","type":"address[]"},{"internalType":"uint256[]","name":"bqTargetPrices","type":"uint256[]"},{"internalType":"uint256[]","name":"qbTargetPrices","type":"uint256[]"},{"internalType":"uint256[]","name":"changesPerBlock","type":"uint256[]"},{"internalType":"bool[]","name":"increases","type":"bool[]"}],"name":"setPricesOverTime","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
608060405234801561000f575f5ffd5b50604051611ab3380380611ab383398101604081905261002e916100d9565b806001600160a01b03811661007c5760405162461bcd60e51b815260206004820152601060248201526f4f776e65642f6f776e65722d7a65726f60801b604482015260640160405180910390fd5b5f80546001600160a01b0319166001600160a01b03831690811782556040805192835260208301919091527fb532073b38c83145e3e5135377a08bf9aab55bc0fd7c1179cd4fb995d2a5159c910160405180910390a15050610106565b5f602082840312156100e9575f5ffd5b81516001600160a01b03811681146100ff575f5ffd5b9392505050565b6119a0806101135f395ff3fe608060405234801561000f575f5ffd5b50600436106100da575f3560e01c806353a47bb711610088578063a405d31211610063578063a405d3121461026c578063ae68676c1461027f578063d073aec1146102a0578063db16a555146102b3575f5ffd5b806353a47bb71461020057806379ba5097146102455780638da5cb5b1461024d575f5ffd5b80631791ad5d116100b85780631791ad5d146101695780631c7efdf01461017c5780631f3124041461018f575f5ffd5b80630579e61f146100de57806306fdde031461010b5780631627540c14610154575b5f5ffd5b6100f16100ec366004611228565b6102c6565b604080519283526020830191909152015b60405180910390f35b6101476040518060400160405280600a81526020017f507573684f7261636c650000000000000000000000000000000000000000000081525081565b6040516101029190611283565b6101676101623660046112d3565b6102e3565b005b6101676101773660046114c8565b610364565b61016761018a3660046115d4565b61046c565b6101d661019d36600461168d565b600260208181525f9384526040808520909152918352912080546001820154928201546003830154600490930154919392909160ff1685565b6040805195865260208601949094529284019190915260608301521515608082015260a001610102565b6001546102209073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610102565b610167610526565b5f546102209073ffffffffffffffffffffffffffffffffffffffff1681565b61016761027a3660046116be565b61064e565b61029261028d366004611228565b610668565b604051908152602001610102565b6101676102ae3660046116fd565b61067e565b6102926102c136600461168d565b61069c565b5f5f5f6102d48686866106b0565b9250829150505b935093915050565b6102eb610756565b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f906a1c6bd7e3091ea86693dd029a831c19049ce77f1dce2ce0bab1cacbabce229060200160405180910390a150565b61036c610756565b8551855161037a82826107d8565b610386885187516107d8565b610392885186516107d8565b61039e885185516107d8565b6103aa885184516107d8565b5f5b8851811015610461576104598982815181106103ca576103ca611758565b60200260200101518983815181106103e4576103e4611758565b60200260200101518984815181106103fe576103fe611758565b602002602001015189858151811061041857610418611758565b602002602001015189868151811061043257610432611758565b602002602001015189878151811061044c5761044c611758565b6020026020010151610815565b6001016103ac565b505050505050505050565b610474610756565b8351835161048282826107d8565b61048e865185516107d8565b61049a865184516107d8565b5f5b865181101561051d576105158782815181106104ba576104ba611758565b60200260200101518783815181106104d4576104d4611758565b60200260200101518784815181106104ee576104ee611758565b602002602001015187858151811061050857610508611758565b6020026020010151610bb6565b60010161049c565b50505050505050565b60015473ffffffffffffffffffffffffffffffffffffffff1633146105ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601360248201527f4f776e65642f6e6f742d6e6f6d696e617465640000000000000000000000000060448201526064015b60405180910390fd5b5f546001546040805173ffffffffffffffffffffffffffffffffffffffff93841681529290911660208301527fb532073b38c83145e3e5135377a08bf9aab55bc0fd7c1179cd4fb995d2a5159c910160405180910390a1600180545f80547fffffffffffffffffffffffff000000000000000000000000000000000000000090811673ffffffffffffffffffffffffffffffffffffffff841617909155169055565b610656610756565b61066284848484610bb6565b50505050565b5f6106748484846106b0565b90505b9392505050565b610686610756565b610694868686868686610815565b505050505050565b5f6106a78383610e6e565b90505b92915050565b5f5f6106bc8484610e6e565b9050805f03610717576040517f4ca22af000000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8086166004830152841660248201526044016105a3565b5f61072185610f89565b90505f61072d85610f89565b90505f61073c83836012611080565b905061074a8885835f611094565b98975050505050505050565b5f5473ffffffffffffffffffffffffffffffffffffffff1633146107d6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f4f776e65642f6e6f742d6f776e6572000000000000000000000000000000000060448201526064016105a3565b565b808214610811576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b8315801561082257508215155b8061083557508215801561083557508315155b8061083e575081155b15610875576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f6108808787610e6e565b90505f61088d8789610e6e565b905081158061089a575080155b156108d1576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82156109165785821115610911576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610950565b85821015610950576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a0016040528083815260200187815260200185815260200143815260200184151581525060025f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018681526020018581526020014381526020018415151581525060025f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf888884848a8a8a604051610ba4979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a15050505050505050565b81158015610bc357508015155b80610bd6575080158015610bd657508115155b15610c0d576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a001604052808381526020018381526020015f81526020014381526020015f151581525060025f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018281526020015f81526020014381526020015f151581525060025f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf8484848486865f604051610e60979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a150505050565b73ffffffffffffffffffffffffffffffffffffffff8083165f9081526002602081815260408084209486168452938152838320845160a08101865281548152600182015492810192909252918201549381018490526003820154606082015260049091015460ff161515608082015290911580610eee5750438160600151145b15610efb575190506106aa565b5f816060015143610f0c91906117b2565b8260400151610f1b91906117c5565b90505f81835f0151610f2d91906117dc565b9050826080015115610f5a5782602001518111610f4a5780610f50565b82602001515b93505050506106aa565b82518211610f74578251610f6f9083906117b2565b610f76565b5f5b905082602001518110610f4a5780610f50565b60408051600481526024810182526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f313ce5670000000000000000000000000000000000000000000000000000000017905290515f918291829173ffffffffffffffffffffffffffffffffffffffff86169161100991906117ef565b5f60405180830381855afa9150503d805f8114611041576040519150601f19603f3d011682016040523d82523d5f602084013e611046565b606091505b5091509150818015611059575080516020145b611064576012611078565b80806020019051810190611078919061180a565b949350505050565b5f6106748361108f868561182a565b6110e4565b5f6fffffffffffffffffffffffffffffffff8316608084901c83156110d0576110c787826110c289866117c5565b611153565b92505050611078565b6110c7876110de88856117c5565b83611153565b5f60268360ff1611806110fa575060268260ff16115b15611131576040517f52a1f2a000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61113c83600a61195c565b608061114984600a61195c565b901b179392505050565b828202818385830414851517026111f9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8385098181108201900382848609835f0384168285116111ac5763ae47f7025f526004601cfd5b93849004938382119092035f839003839004600101029203041760026003830281188084028203028084028203028084028203028084028203028084028203028084029091030202610677565b0492915050565b803573ffffffffffffffffffffffffffffffffffffffff81168114611223575f5ffd5b919050565b5f5f5f6060848603121561123a575f5ffd5b8335925061124a60208501611200565b915061125860408501611200565b90509250925092565b5f5b8381101561127b578181015183820152602001611263565b50505f910152565b602081525f82518060208401526112a1816040850160208701611261565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b5f602082840312156112e3575f5ffd5b6106a782611200565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715611360576113606112ec565b604052919050565b5f67ffffffffffffffff821115611381576113816112ec565b5060051b60200190565b5f82601f83011261139a575f5ffd5b81356113ad6113a882611368565b611319565b8082825260208201915060208360051b8601019250858311156113ce575f5ffd5b602085015b838110156113f2576113e481611200565b8352602092830192016113d3565b5095945050505050565b5f82601f83011261140b575f5ffd5b81356114196113a882611368565b8082825260208201915060208360051b86010192508583111561143a575f5ffd5b602085015b838110156113f257803583526020928301920161143f565b80358015158114611223575f5ffd5b5f82601f830112611475575f5ffd5b81356114836113a882611368565b8082825260208201915060208360051b8601019250858311156114a4575f5ffd5b602085015b838110156113f2576114ba81611457565b8352602092830192016114a9565b5f5f5f5f5f5f60c087890312156114dd575f5ffd5b863567ffffffffffffffff8111156114f3575f5ffd5b6114ff89828a0161138b565b965050602087013567ffffffffffffffff81111561151b575f5ffd5b61152789828a0161138b565b955050604087013567ffffffffffffffff811115611543575f5ffd5b61154f89828a016113fc565b945050606087013567ffffffffffffffff81111561156b575f5ffd5b61157789828a016113fc565b935050608087013567ffffffffffffffff811115611593575f5ffd5b61159f89828a016113fc565b92505060a087013567ffffffffffffffff8111156115bb575f5ffd5b6115c789828a01611466565b9150509295509295509295565b5f5f5f5f608085870312156115e7575f5ffd5b843567ffffffffffffffff8111156115fd575f5ffd5b6116098782880161138b565b945050602085013567ffffffffffffffff811115611625575f5ffd5b6116318782880161138b565b935050604085013567ffffffffffffffff81111561164d575f5ffd5b611659878288016113fc565b925050606085013567ffffffffffffffff811115611675575f5ffd5b611681878288016113fc565b91505092959194509250565b5f5f6040838503121561169e575f5ffd5b6116a783611200565b91506116b560208401611200565b90509250929050565b5f5f5f5f608085870312156116d1575f5ffd5b6116da85611200565b93506116e860208601611200565b93969395505050506040820135916060013590565b5f5f5f5f5f5f60c08789031215611712575f5ffd5b61171b87611200565b955061172960208801611200565b945060408701359350606087013592506080870135915061174c60a08801611457565b90509295509295509295565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b818103818111156106aa576106aa611785565b80820281158282048414176106aa576106aa611785565b808201808211156106aa576106aa611785565b5f8251611800818460208701611261565b9190910192915050565b5f6020828403121561181a575f5ffd5b815160ff81168114610677575f5ffd5b60ff81811683821601908111156106aa576106aa611785565b6001815b60018411156102db5780850481111561186257611862611785565b600184161561187057908102905b60019390931c928002611847565b5f8261188c575060016106aa565b8161189857505f6106aa565b81600181146118ae57600281146118b8576118d4565b60019150506106aa565b60ff8411156118c9576118c9611785565b50506001821b6106aa565b5060208310610133831016604e8410600b84101617156118f7575081810a6106aa565b6119227fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484611843565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0482111561195457611954611785565b029392505050565b5f6106a760ff84168361187e56fea26469706673582212207cd259617a62de2491b61d9d4f549ded2d13f8a08b908adec394e429b77f0fb664736f6c634300081c0033000000000000000000000000919d5a6f2cbc0731380c26b4ac4f6183dd3a40c8
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106100da575f3560e01c806353a47bb711610088578063a405d31211610063578063a405d3121461026c578063ae68676c1461027f578063d073aec1146102a0578063db16a555146102b3575f5ffd5b806353a47bb71461020057806379ba5097146102455780638da5cb5b1461024d575f5ffd5b80631791ad5d116100b85780631791ad5d146101695780631c7efdf01461017c5780631f3124041461018f575f5ffd5b80630579e61f146100de57806306fdde031461010b5780631627540c14610154575b5f5ffd5b6100f16100ec366004611228565b6102c6565b604080519283526020830191909152015b60405180910390f35b6101476040518060400160405280600a81526020017f507573684f7261636c650000000000000000000000000000000000000000000081525081565b6040516101029190611283565b6101676101623660046112d3565b6102e3565b005b6101676101773660046114c8565b610364565b61016761018a3660046115d4565b61046c565b6101d661019d36600461168d565b600260208181525f9384526040808520909152918352912080546001820154928201546003830154600490930154919392909160ff1685565b6040805195865260208601949094529284019190915260608301521515608082015260a001610102565b6001546102209073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610102565b610167610526565b5f546102209073ffffffffffffffffffffffffffffffffffffffff1681565b61016761027a3660046116be565b61064e565b61029261028d366004611228565b610668565b604051908152602001610102565b6101676102ae3660046116fd565b61067e565b6102926102c136600461168d565b61069c565b5f5f5f6102d48686866106b0565b9250829150505b935093915050565b6102eb610756565b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f906a1c6bd7e3091ea86693dd029a831c19049ce77f1dce2ce0bab1cacbabce229060200160405180910390a150565b61036c610756565b8551855161037a82826107d8565b610386885187516107d8565b610392885186516107d8565b61039e885185516107d8565b6103aa885184516107d8565b5f5b8851811015610461576104598982815181106103ca576103ca611758565b60200260200101518983815181106103e4576103e4611758565b60200260200101518984815181106103fe576103fe611758565b602002602001015189858151811061041857610418611758565b602002602001015189868151811061043257610432611758565b602002602001015189878151811061044c5761044c611758565b6020026020010151610815565b6001016103ac565b505050505050505050565b610474610756565b8351835161048282826107d8565b61048e865185516107d8565b61049a865184516107d8565b5f5b865181101561051d576105158782815181106104ba576104ba611758565b60200260200101518783815181106104d4576104d4611758565b60200260200101518784815181106104ee576104ee611758565b602002602001015187858151811061050857610508611758565b6020026020010151610bb6565b60010161049c565b50505050505050565b60015473ffffffffffffffffffffffffffffffffffffffff1633146105ac576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601360248201527f4f776e65642f6e6f742d6e6f6d696e617465640000000000000000000000000060448201526064015b60405180910390fd5b5f546001546040805173ffffffffffffffffffffffffffffffffffffffff93841681529290911660208301527fb532073b38c83145e3e5135377a08bf9aab55bc0fd7c1179cd4fb995d2a5159c910160405180910390a1600180545f80547fffffffffffffffffffffffff000000000000000000000000000000000000000090811673ffffffffffffffffffffffffffffffffffffffff841617909155169055565b610656610756565b61066284848484610bb6565b50505050565b5f6106748484846106b0565b90505b9392505050565b610686610756565b610694868686868686610815565b505050505050565b5f6106a78383610e6e565b90505b92915050565b5f5f6106bc8484610e6e565b9050805f03610717576040517f4ca22af000000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8086166004830152841660248201526044016105a3565b5f61072185610f89565b90505f61072d85610f89565b90505f61073c83836012611080565b905061074a8885835f611094565b98975050505050505050565b5f5473ffffffffffffffffffffffffffffffffffffffff1633146107d6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f4f776e65642f6e6f742d6f776e6572000000000000000000000000000000000060448201526064016105a3565b565b808214610811576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b8315801561082257508215155b8061083557508215801561083557508315155b8061083e575081155b15610875576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f6108808787610e6e565b90505f61088d8789610e6e565b905081158061089a575080155b156108d1576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82156109165785821115610911576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b610950565b85821015610950576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a0016040528083815260200187815260200185815260200143815260200184151581525060025f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018681526020018581526020014381526020018415151581525060025f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8a73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf888884848a8a8a604051610ba4979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a15050505050505050565b81158015610bc357508015155b80610bd6575080158015610bd657508115155b15610c0d576040517f43f3e27e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6040518060a001604052808381526020018381526020015f81526020014381526020015f151581525060025f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050506040518060a001604052808281526020018281526020015f81526020014381526020015f151581525060025f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f820151815f01556020820151816001015560408201518160020155606082015181600301556080820151816004015f6101000a81548160ff0219169083151502179055509050507f03079908f7faa801c534981115df837b1e31a242ebd565f90a20d1d570a947cf8484848486865f604051610e60979695949392919073ffffffffffffffffffffffffffffffffffffffff978816815295909616602086015260408501939093526060840191909152608083015260a082015260c081019190915260e00190565b60405180910390a150505050565b73ffffffffffffffffffffffffffffffffffffffff8083165f9081526002602081815260408084209486168452938152838320845160a08101865281548152600182015492810192909252918201549381018490526003820154606082015260049091015460ff161515608082015290911580610eee5750438160600151145b15610efb575190506106aa565b5f816060015143610f0c91906117b2565b8260400151610f1b91906117c5565b90505f81835f0151610f2d91906117dc565b9050826080015115610f5a5782602001518111610f4a5780610f50565b82602001515b93505050506106aa565b82518211610f74578251610f6f9083906117b2565b610f76565b5f5b905082602001518110610f4a5780610f50565b60408051600481526024810182526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f313ce5670000000000000000000000000000000000000000000000000000000017905290515f918291829173ffffffffffffffffffffffffffffffffffffffff86169161100991906117ef565b5f60405180830381855afa9150503d805f8114611041576040519150601f19603f3d011682016040523d82523d5f602084013e611046565b606091505b5091509150818015611059575080516020145b611064576012611078565b80806020019051810190611078919061180a565b949350505050565b5f6106748361108f868561182a565b6110e4565b5f6fffffffffffffffffffffffffffffffff8316608084901c83156110d0576110c787826110c289866117c5565b611153565b92505050611078565b6110c7876110de88856117c5565b83611153565b5f60268360ff1611806110fa575060268260ff16115b15611131576040517f52a1f2a000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61113c83600a61195c565b608061114984600a61195c565b901b179392505050565b828202818385830414851517026111f9577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8385098181108201900382848609835f0384168285116111ac5763ae47f7025f526004601cfd5b93849004938382119092035f839003839004600101029203041760026003830281188084028203028084028203028084028203028084028203028084028203028084029091030202610677565b0492915050565b803573ffffffffffffffffffffffffffffffffffffffff81168114611223575f5ffd5b919050565b5f5f5f6060848603121561123a575f5ffd5b8335925061124a60208501611200565b915061125860408501611200565b90509250925092565b5f5b8381101561127b578181015183820152602001611263565b50505f910152565b602081525f82518060208401526112a1816040850160208701611261565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169190910160400192915050565b5f602082840312156112e3575f5ffd5b6106a782611200565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016810167ffffffffffffffff81118282101715611360576113606112ec565b604052919050565b5f67ffffffffffffffff821115611381576113816112ec565b5060051b60200190565b5f82601f83011261139a575f5ffd5b81356113ad6113a882611368565b611319565b8082825260208201915060208360051b8601019250858311156113ce575f5ffd5b602085015b838110156113f2576113e481611200565b8352602092830192016113d3565b5095945050505050565b5f82601f83011261140b575f5ffd5b81356114196113a882611368565b8082825260208201915060208360051b86010192508583111561143a575f5ffd5b602085015b838110156113f257803583526020928301920161143f565b80358015158114611223575f5ffd5b5f82601f830112611475575f5ffd5b81356114836113a882611368565b8082825260208201915060208360051b8601019250858311156114a4575f5ffd5b602085015b838110156113f2576114ba81611457565b8352602092830192016114a9565b5f5f5f5f5f5f60c087890312156114dd575f5ffd5b863567ffffffffffffffff8111156114f3575f5ffd5b6114ff89828a0161138b565b965050602087013567ffffffffffffffff81111561151b575f5ffd5b61152789828a0161138b565b955050604087013567ffffffffffffffff811115611543575f5ffd5b61154f89828a016113fc565b945050606087013567ffffffffffffffff81111561156b575f5ffd5b61157789828a016113fc565b935050608087013567ffffffffffffffff811115611593575f5ffd5b61159f89828a016113fc565b92505060a087013567ffffffffffffffff8111156115bb575f5ffd5b6115c789828a01611466565b9150509295509295509295565b5f5f5f5f608085870312156115e7575f5ffd5b843567ffffffffffffffff8111156115fd575f5ffd5b6116098782880161138b565b945050602085013567ffffffffffffffff811115611625575f5ffd5b6116318782880161138b565b935050604085013567ffffffffffffffff81111561164d575f5ffd5b611659878288016113fc565b925050606085013567ffffffffffffffff811115611675575f5ffd5b611681878288016113fc565b91505092959194509250565b5f5f6040838503121561169e575f5ffd5b6116a783611200565b91506116b560208401611200565b90509250929050565b5f5f5f5f608085870312156116d1575f5ffd5b6116da85611200565b93506116e860208601611200565b93969395505050506040820135916060013590565b5f5f5f5f5f5f60c08789031215611712575f5ffd5b61171b87611200565b955061172960208801611200565b945060408701359350606087013592506080870135915061174c60a08801611457565b90509295509295509295565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b818103818111156106aa576106aa611785565b80820281158282048414176106aa576106aa611785565b808201808211156106aa576106aa611785565b5f8251611800818460208701611261565b9190910192915050565b5f6020828403121561181a575f5ffd5b815160ff81168114610677575f5ffd5b60ff81811683821601908111156106aa576106aa611785565b6001815b60018411156102db5780850481111561186257611862611785565b600184161561187057908102905b60019390931c928002611847565b5f8261188c575060016106aa565b8161189857505f6106aa565b81600181146118ae57600281146118b8576118d4565b60019150506106aa565b60ff8411156118c9576118c9611785565b50506001821b6106aa565b5060208310610133831016604e8410600b84101617156118f7575081810a6106aa565b6119227fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484611843565b807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0482111561195457611954611785565b029392505050565b5f6106a760ff84168361187e56fea26469706673582212207cd259617a62de2491b61d9d4f549ded2d13f8a08b908adec394e429b77f0fb664736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000919d5a6f2cbc0731380c26b4ac4f6183dd3a40c8
-----Decoded View---------------
Arg [0] : _owner (address): 0x919D5a6F2CBc0731380C26B4AC4f6183dD3A40C8
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000919d5a6f2cbc0731380c26b4ac4f6183dd3a40c8
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.