Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00Multichain Info
N/A
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
RateAdjustmentOracle
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.20; import "../interfaces/IRateAdjustmentOracle.sol"; import "../interfaces/IPrincipalToken.sol"; import "../interfaces/IStableSwapNG.sol"; import "../libraries/RateAdjustmentMath.sol"; import "../libraries/RayMath.sol"; import "openzeppelin-math/Math.sol"; import "openzeppelin-contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol"; import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {IERC4626} from "openzeppelin-contracts/interfaces/IERC4626.sol"; contract RateAdjustmentOracle is AccessManagedUpgradeable, IRateAdjustmentOracle { using Math for uint256; using RayMath for uint256; // state address private curvePoolAddress; uint256 private startTime; uint256 private expiry; uint256 private initialPrice; // constants uint64 private constant POST_INIT_ID = 2; uint256 private constant ORACLE_DECIMALS = 18; /* EVENTS *****************************************************************************************************************/ event InitialPriceChanged( uint256 indexed _previousInitialPrice, uint256 indexed _newInitialPrice ); /* CONSTRUCTOR *****************************************************************************************************************/ constructor() { _disableInitializers(); } /* INITIALIZERS *****************************************************************************************************************/ /** @dev See {IRateAdjustmentOracle-initialize}. */ function initialize(address _initialAuthority) external initializer { if (_initialAuthority == address(0)) { revert AddressError(); } __AccessManaged_init(_initialAuthority); } /** @dev See {IRateAdjustmentOracle-post_initialize}. */ function post_initialize( uint256 _initialTimestamp, uint256 _expiry, uint256 _initialPrice, address _curvePoolAddress ) external override restricted reinitializer(POST_INIT_ID) { if (_curvePoolAddress == address(0)) { revert AddressError(); } curvePoolAddress = _curvePoolAddress; startTime = _initialTimestamp; expiry = _expiry; initialPrice = _initialPrice; } /* FUNCTIONS *****************************************************************************************************************/ /** @dev See {IRateAdjustmentOracle-value}. */ function value() external view returns (uint256 rate) { if (curvePoolAddress == address(0)) { revert AddressesNotSet(); } // Get the future PT value in 18 decimals address ptAddress = IStableSwapNG(curvePoolAddress).coins(1); address ibtAddress = IStableSwapNG(curvePoolAddress).coins(0); address underlyingAddress = IERC4626(ibtAddress).asset(); uint8 ibtDecimals = IERC20Metadata(ibtAddress).decimals(); uint8 underlyingDecimals = IERC20Metadata(underlyingAddress).decimals(); uint256 ibtUnit = 10 ** ibtDecimals; uint256 underlyingUnit = 10 ** underlyingDecimals; uint256 futurePTValue = IPrincipalToken(ptAddress).convertToUnderlying(ibtUnit) * 10 ** (ORACLE_DECIMALS - underlyingDecimals); // @dev: Curve IERC4626 oracle uses convertToAssets, which is imprecise, hence we correct it here with previewRedeem uint256 adjustedFuturePTValue = (futurePTValue * IERC4626(ibtAddress).convertToAssets(ibtUnit)) / IERC4626(ibtAddress).previewRedeem(ibtUnit); // Get the adjustment factor rate = RateAdjustmentMath.getAdjustmentFactor( startTime, block.timestamp, expiry, initialPrice, adjustedFuturePTValue ); } /** @dev See {IRateAdjustmentOracle-setInitialPrice}. */ function setInitialPrice(uint256 _newInitialPrice) external override restricted { emit InitialPriceChanged(initialPrice, _newInitialPrice); initialPrice = _newInitialPrice; } /** @dev See {IRateAdjustmentOracle-getInitialPrice}. */ function getInitialPrice() external view returns (uint256) { return initialPrice; } /** @dev See {IRateAdjustmentOracle-getCurvePoolAddress}. */ function getCurvePoolAddress() external view returns (address) { return curvePoolAddress; } /** @dev See {IRateAdjustmentOracle-getStartTime}. */ function getStartTime() external view returns (uint256) { return startTime; } /** @dev See {IRateAdjustmentOracle-getExpiry}. */ function getExpiry() external view returns (uint256) { return expiry; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManaged.sol) pragma solidity ^0.8.20; import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol"; import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol"; import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol"; import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface, * implementing a policy that allows certain callers to access certain functions. * * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public` * functions, and ideally only used in `external` functions. See {restricted}. */ abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged { /// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged struct AccessManagedStorage { address _authority; bool _consumingSchedule; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00; function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) { assembly { $.slot := AccessManagedStorageLocation } } /** * @dev Initializes the contract connected to an initial authority. */ function __AccessManaged_init(address initialAuthority) internal onlyInitializing { __AccessManaged_init_unchained(initialAuthority); } function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing { _setAuthority(initialAuthority); } /** * @dev Restricts access to a function as defined by the connected Authority for this contract and the * caller and selector of the function that entered the contract. * * [IMPORTANT] * ==== * In general, this modifier should only be used on `external` functions. It is okay to use it on `public` * functions that are used as external entry points and are not called internally. Unless you know what you're * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security * implications! This is because the permissions are determined by the function that entered the contract, i.e. the * function at the bottom of the call stack, and not the function where the modifier is visible in the source code. * ==== * * [WARNING] * ==== * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`] * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These * functions are the only execution paths where a function selector cannot be unambiguosly determined from the calldata * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function * if no calldata is provided. (See {_checkCanCall}). * * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length. * ==== */ modifier restricted() { _checkCanCall(_msgSender(), _msgData()); _; } /// @inheritdoc IAccessManaged function authority() public view virtual returns (address) { AccessManagedStorage storage $ = _getAccessManagedStorage(); return $._authority; } /// @inheritdoc IAccessManaged function setAuthority(address newAuthority) public virtual { address caller = _msgSender(); if (caller != authority()) { revert AccessManagedUnauthorized(caller); } if (newAuthority.code.length == 0) { revert AccessManagedInvalidAuthority(newAuthority); } _setAuthority(newAuthority); } /// @inheritdoc IAccessManaged function isConsumingScheduledOp() public view returns (bytes4) { AccessManagedStorage storage $ = _getAccessManagedStorage(); return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0); } /** * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the * permissions set by the current authority. */ function _setAuthority(address newAuthority) internal virtual { AccessManagedStorage storage $ = _getAccessManagedStorage(); $._authority = newAuthority; emit AuthorityUpdated(newAuthority); } /** * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata * is less than 4 bytes long. */ function _checkCanCall(address caller, bytes calldata data) internal virtual { AccessManagedStorage storage $ = _getAccessManagedStorage(); (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay( authority(), caller, address(this), bytes4(data[0:4]) ); if (!immediate) { if (delay > 0) { $._consumingSchedule = true; IAccessManager(authority()).consumeScheduledOp(caller, data); $._consumingSchedule = false; } else { revert AccessManagedUnauthorized(caller); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol) pragma solidity ^0.8.20; import {IAuthority} from "./IAuthority.sol"; library AuthorityUtils { /** * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data. * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting. */ function canCallWithDelay( address authority, address caller, address target, bytes4 selector ) internal view returns (bool immediate, uint32 delay) { (bool success, bytes memory data) = authority.staticcall( abi.encodeCall(IAuthority.canCall, (caller, target, selector)) ); if (success) { if (data.length >= 0x40) { (immediate, delay) = abi.decode(data, (bool, uint32)); } else if (data.length >= 0x20) { immediate = abi.decode(data, (bool)); } } return (immediate, delay); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol) pragma solidity ^0.8.20; interface IAccessManaged { /** * @dev Authority that manages this contract was updated. */ event AuthorityUpdated(address authority); error AccessManagedUnauthorized(address caller); error AccessManagedRequiredDelay(address caller, uint32 delay); error AccessManagedInvalidAuthority(address authority); /** * @dev Returns the current authority. */ function authority() external view returns (address); /** * @dev Transfers control to a new authority. The caller must be the current authority. */ function setAuthority(address) external; /** * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs * attacker controlled calls. */ function isConsumingScheduledOp() external view returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol) pragma solidity ^0.8.20; import {IAccessManaged} from "./IAccessManaged.sol"; import {Time} from "../../utils/types/Time.sol"; interface IAccessManager { /** * @dev A delayed operation was scheduled. */ event OperationScheduled( bytes32 indexed operationId, uint32 indexed nonce, uint48 schedule, address caller, address target, bytes data ); /** * @dev A scheduled operation was executed. */ event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev A scheduled operation was canceled. */ event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev Informational labelling for a roleId. */ event RoleLabel(uint64 indexed roleId, string label); /** * @dev Emitted when `account` is granted `roleId`. * * NOTE: The meaning of the `since` argument depends on the `newMember` argument. * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role, * otherwise it indicates the execution delay for this account and roleId is updated. */ event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember); /** * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous. */ event RoleRevoked(uint64 indexed roleId, address indexed account); /** * @dev Role acting as admin over a given `roleId` is updated. */ event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin); /** * @dev Role acting as guardian over a given `roleId` is updated. */ event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian); /** * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached. */ event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since); /** * @dev Target mode is updated (true = closed, false = open). */ event TargetClosed(address indexed target, bool closed); /** * @dev Role required to invoke `selector` on `target` is updated to `roleId`. */ event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId); /** * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached. */ event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since); error AccessManagerAlreadyScheduled(bytes32 operationId); error AccessManagerNotScheduled(bytes32 operationId); error AccessManagerNotReady(bytes32 operationId); error AccessManagerExpired(bytes32 operationId); error AccessManagerLockedAccount(address account); error AccessManagerLockedRole(uint64 roleId); error AccessManagerBadConfirmation(); error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId); error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector); error AccessManagerUnauthorizedConsume(address target); error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector); error AccessManagerInvalidInitialAdmin(address initialAdmin); /** * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule} * & {execute} workflow. * * This function is usually called by the targeted contract to control immediate execution of restricted functions. * Therefore we only return true if the call can be performed without any delay. If the call is subject to a * previously set delay (not zero), then the function should return false and the caller should schedule the operation * for future execution. * * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise * the operation can be executed if and only if delay is greater than 0. * * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail * to identify the indirect workflow, and will consider calls that require a delay to be forbidden. * * NOTE: This function does not report the permissions of this manager itself. These are defined by the * {_canCallSelf} function instead. */ function canCall( address caller, address target, bytes4 selector ) external view returns (bool allowed, uint32 delay); /** * @dev Expiration delay for scheduled proposals. Defaults to 1 week. * * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately, * disabling any scheduling usage. */ function expiration() external view returns (uint32); /** * @dev Minimum setback for all delay updates, with the exception of execution delays. It * can be increased without setback (and reset via {revokeRole} in the case event of an * accidental increase). Defaults to 5 days. */ function minSetback() external view returns (uint32); /** * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied. */ function isTargetClosed(address target) external view returns (bool); /** * @dev Get the role required to call a function. */ function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64); /** * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay. */ function getTargetAdminDelay(address target) external view returns (uint32); /** * @dev Get the id of the role that acts as an admin for the given role. * * The admin permission is required to grant the role, revoke the role and update the execution delay to execute * an operation that is restricted to this role. */ function getRoleAdmin(uint64 roleId) external view returns (uint64); /** * @dev Get the role that acts as a guardian for a given role. * * The guardian permission allows canceling operations that have been scheduled under the role. */ function getRoleGuardian(uint64 roleId) external view returns (uint64); /** * @dev Get the role current grant delay. * * Its value may change at any point without an event emitted following a call to {setGrantDelay}. * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event. */ function getRoleGrantDelay(uint64 roleId) external view returns (uint32); /** * @dev Get the access details for a given account for a given role. These details include the timepoint at which * membership becomes active, and the delay applied to all operation by this user that requires this permission * level. * * Returns: * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted. * [1] Current execution delay for the account. * [2] Pending execution delay for the account. * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled. */ function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48); /** * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this * permission might be associated with an execution delay. {getAccess} can provide more details. */ function hasRole(uint64 roleId, address account) external view returns (bool, uint32); /** * @dev Give a label to a role, for improved role discoverability by UIs. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleLabel} event. */ function labelRole(uint64 roleId, string calldata label) external; /** * @dev Add `account` to `roleId`, or change its execution delay. * * This gives the account the authorization to call any function that is restricted to this role. An optional * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation * that is restricted to members of this role. The user will only be able to execute the operation after the delay has * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}). * * If the account has already been granted this role, the execution delay will be updated. This update is not * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any * operation executed in the 3 hours that follows this update was indeed scheduled before this update. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - granted role must not be the `PUBLIC_ROLE` * * Emits a {RoleGranted} event. */ function grantRole(uint64 roleId, address account, uint32 executionDelay) external; /** * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has * no effect. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - revoked role must not be the `PUBLIC_ROLE` * * Emits a {RoleRevoked} event if the account had the role. */ function revokeRole(uint64 roleId, address account) external; /** * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in * the role this call has no effect. * * Requirements: * * - the caller must be `callerConfirmation`. * * Emits a {RoleRevoked} event if the account had the role. */ function renounceRole(uint64 roleId, address callerConfirmation) external; /** * @dev Change admin role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleAdminChanged} event */ function setRoleAdmin(uint64 roleId, uint64 admin) external; /** * @dev Change guardian role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGuardianChanged} event */ function setRoleGuardian(uint64 roleId, uint64 guardian) external; /** * @dev Update the delay for granting a `roleId`. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGrantDelayChanged} event. */ function setGrantDelay(uint64 roleId, uint32 newDelay) external; /** * @dev Set the role required to call functions identified by the `selectors` in the `target` contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetFunctionRoleUpdated} event per selector. */ function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external; /** * @dev Set the delay for changing the configuration of a given target contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetAdminDelayUpdated} event. */ function setTargetAdminDelay(address target, uint32 newDelay) external; /** * @dev Set the closed flag for a contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetClosed} event. */ function setTargetClosed(address target, bool closed) external; /** * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the * operation is not yet scheduled, has expired, was executed, or was canceled. */ function getSchedule(bytes32 id) external view returns (uint48); /** * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never * been scheduled. */ function getNonce(bytes32 id) external view returns (uint32); /** * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays * required for the caller. The special value zero will automatically set the earliest possible time. * * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}. * * Emits a {OperationScheduled} event. * * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target * contract if it is using standard Solidity ABI encoding. */ function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32); /** * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the * execution delay is 0. * * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the * operation wasn't previously scheduled (if the caller doesn't have an execution delay). * * Emits an {OperationExecuted} event only if the call was scheduled and delayed. */ function execute(address target, bytes calldata data) external payable returns (uint32); /** * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled * operation that is cancelled. * * Requirements: * * - the caller must be the proposer, a guardian of the targeted function, or a global admin * * Emits a {OperationCanceled} event. */ function cancel(address caller, address target, bytes calldata data) external returns (uint32); /** * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error. * * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager, * with all the verifications that it implies. * * Emit a {OperationExecuted} event. */ function consumeScheduledOp(address caller, bytes calldata data) external; /** * @dev Hashing function for delayed operations. */ function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32); /** * @dev Changes the authority of a target managed by this manager instance. * * Requirements: * * - the caller must be a global admin */ function updateAuthority(address target, address newAuthority) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol) pragma solidity ^0.8.20; /** * @dev Standard interface for permissioning originally defined in Dappsys. */ interface IAuthority { /** * @dev Returns true if the caller can invoke on a target the function identified by a function selector. */ function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashBorrower.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC3156 FlashBorrower, as defined in * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156]. */ interface IERC3156FlashBorrower { /** * @dev Receive a flash loan. * @param initiator The initiator of the loan. * @param token The loan currency. * @param amount The amount of tokens lent. * @param fee The additional amount of tokens to repay. * @param data Arbitrary data structure, intended to contain user-defined parameters. * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan" */ function onFlashLoan( address initiator, address token, uint256 amount, uint256 fee, bytes calldata data ) external returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashLender.sol) pragma solidity ^0.8.20; import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol"; /** * @dev Interface of the ERC3156 FlashLender, as defined in * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156]. */ interface IERC3156FlashLender { /** * @dev The amount of currency available to be lended. * @param token The loan currency. * @return The amount of `token` that can be borrowed. */ function maxFlashLoan(address token) external view returns (uint256); /** * @dev The fee to be charged for a given loan. * @param token The loan currency. * @param amount The amount of tokens lent. * @return The amount of `token` to be charged for the loan, on top of the returned principal. */ function flashFee(address token, uint256 amount) external view returns (uint256); /** * @dev Initiate a flash loan. * @param receiver The receiver of the tokens in the loan, and the receiver of the callback. * @param token The loan currency. * @param amount The amount of tokens lent. * @param data Arbitrary data structure, intended to contain user-defined parameters. */ function flashLoan( IERC3156FlashBorrower receiver, address token, uint256 amount, bytes calldata data ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // ? `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // ? `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ? ? ? [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.20; import "openzeppelin-contracts/interfaces/IERC20.sol"; import "openzeppelin-contracts/interfaces/IERC20Metadata.sol"; import "openzeppelin-contracts/interfaces/IERC3156FlashLender.sol"; interface IPrincipalToken is IERC20, IERC20Metadata, IERC3156FlashLender { /* ERRORS *****************************************************************************************************************/ error InvalidDecimals(); error BeaconNotSet(); error PTExpired(); error PTNotExpired(); error RateError(); error AddressError(); error UnauthorizedCaller(); error RatesAtExpiryAlreadyStored(); error ERC5143SlippageProtectionFailed(); error InsufficientBalance(); error FlashLoanExceedsMaxAmount(); error FlashLoanCallbackFailed(); error NoRewardsProxy(); error ClaimRewardsFailed(); /* Functions *****************************************************************************************************************/ function initialize(address _ibt, uint256 _duration, address initialAuthority) external; /** * @notice Toggle Pause * @dev Should only be called in extraordinary situations by the admin of the contract */ function pause() external; /** * @notice Toggle UnPause * @dev Should only be called in extraordinary situations by the admin of the contract */ function unPause() external; /** * @notice Deposits amount of assets in the PT vault * @param assets The amount of assets being deposited * @param receiver The receiver address of the shares * @return shares The amount of shares minted (same amount for PT & yt) */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @notice Deposits amount of assets in the PT vault * @param assets The amount of assets being deposited * @param ptReceiver The receiver address of the PTs * @param ytReceiver the receiver address of the YTs * @return shares The amount of shares minted (same amount for PT & yt) */ function deposit( uint256 assets, address ptReceiver, address ytReceiver ) external returns (uint256 shares); /** * @notice Deposits amount of assets with a lower bound on shares received * @param assets The amount of assets being deposited * @param ptReceiver The receiver address of the PTs * @param ytReceiver The receiver address of the YTs * @param minShares The minimum allowed shares from this deposit * @return shares The amount of shares actually minted to the receiver */ function deposit( uint256 assets, address ptReceiver, address ytReceiver, uint256 minShares ) external returns (uint256 shares); /** * @notice Same as normal deposit but with IBTs * @param ibts The amount of IBT being deposited * @param receiver The receiver address of the shares * @return shares The amount of shares minted to the receiver */ function depositIBT(uint256 ibts, address receiver) external returns (uint256 shares); /** * @notice Same as normal deposit but with IBTs * @param ibts The amount of IBT being deposited * @param ptReceiver The receiver address of the PTs * @param ytReceiver the receiver address of the YTs * @return shares The amount of shares minted to the receiver */ function depositIBT( uint256 ibts, address ptReceiver, address ytReceiver ) external returns (uint256 shares); /** * @notice Same as normal deposit but with IBTs * @param ibts The amount of IBT being deposited * @param ptReceiver The receiver address of the PTs * @param ytReceiver The receiver address of the YTs * @param minShares The minimum allowed shares from this deposit * @return shares The amount of shares minted to the receiver */ function depositIBT( uint256 ibts, address ptReceiver, address ytReceiver, uint256 minShares ) external returns (uint256 shares); /** * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry) * and sends assets to receiver * @param shares The amount of shares to burn * @param receiver The address that will receive the assets * @param owner The owner of the shares * @return assets The actual amount of assets received for burning the shares */ function redeem( uint256 shares, address receiver, address owner ) external returns (uint256 assets); /** * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry) * and sends assets to receiver * @param shares The amount of shares to burn * @param receiver The address that will receive the assets * @param owner The owner of the shares * @param minAssets The minimum assets that should be returned to user * @return assets The actual amount of assets received for burning the shares */ function redeem( uint256 shares, address receiver, address owner, uint256 minAssets ) external returns (uint256 assets); /** * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry) * and sends IBTs to receiver * @param shares The amount of shares to burn * @param receiver The address that will receive the IBTs * @param owner The owner of the shares * @return ibts The actual amount of IBT received for burning the shares */ function redeemForIBT( uint256 shares, address receiver, address owner ) external returns (uint256 ibts); /** * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry) * and sends IBTs to receiver * @param shares The amount of shares to burn * @param receiver The address that will receive the IBTs * @param owner The owner of the shares * @param minIbts The minimum IBTs that should be returned to user * @return ibts The actual amount of IBT received for burning the shares */ function redeemForIBT( uint256 shares, address receiver, address owner, uint256 minIbts ) external returns (uint256 ibts); /** * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver * @param assets The amount of assets to be received * @param receiver The address that will receive the assets * @param owner The owner of the shares (PTs and YTs) * @return shares The actual amount of shares burnt for receiving the assets */ function withdraw( uint256 assets, address receiver, address owner ) external returns (uint256 shares); /** * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver * @param assets The amount of assets to be received * @param receiver The address that will receive the assets * @param owner The owner of the shares (PTs and YTs) * @param maxShares The maximum shares allowed to be burnt * @return shares The actual amount of shares burnt for receiving the assets */ function withdraw( uint256 assets, address receiver, address owner, uint256 maxShares ) external returns (uint256 shares); /** * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver * @param ibts The amount of IBT to be received * @param receiver The address that will receive the IBTs * @param owner The owner of the shares (PTs and YTs) * @return shares The actual amount of shares burnt for receiving the IBTs */ function withdrawIBT( uint256 ibts, address receiver, address owner ) external returns (uint256 shares); /** * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver * @param ibts The amount of IBT to be received * @param receiver The address that will receive the IBTs * @param owner The owner of the shares (PTs and YTs) * @param maxShares The maximum shares allowed to be burnt * @return shares The actual amount of shares burnt for receiving the IBTs */ function withdrawIBT( uint256 ibts, address receiver, address owner, uint256 maxShares ) external returns (uint256 shares); /** * @notice Updates _user's yield since last update * @param _user The user whose yield will be updated * @return updatedUserYieldInIBT The unclaimed yield of the user in IBT (not just the updated yield) */ function updateYield(address _user) external returns (uint256 updatedUserYieldInIBT); /** * @notice Claims caller's unclaimed yield in asset * @param _receiver The receiver of yield * @param _minAssets The minimum amount of assets that should be received * @return yieldInAsset The amount of yield claimed in asset */ function claimYield( address _receiver, uint256 _minAssets ) external returns (uint256 yieldInAsset); /** * @notice Claims caller's unclaimed yield in IBT * @param _receiver The receiver of yield * @param _minIBT The minimum amount of IBT that should be received * @return yieldInIBT The amount of yield claimed in IBT */ function claimYieldInIBT( address _receiver, uint256 _minIBT ) external returns (uint256 yieldInIBT); /** * @notice Claims the collected ibt fees and redeems them to the fee collector * @param _minAssets The minimum amount of assets that should be received * @return assets The amount of assets sent to the fee collector */ function claimFees(uint256 _minAssets) external returns (uint256 assets); /** * @notice Updates yield of both sender and receiver of YTs * @param _from the sender of YTs * @param _to the receiver of YTs */ function beforeYtTransfer(address _from, address _to) external; /** * Call the claimRewards function of the rewards contract * @param data The optional data to be passed to the rewards contract */ function claimRewards(bytes memory data) external; /* SETTERS *****************************************************************************************************************/ /** * @notice Stores PT and IBT rates at expiry. Ideally, it should be called the day of expiry */ function storeRatesAtExpiry() external; /** Set a new Rewards Proxy * @param _rewardsProxy The address of the new reward proxy */ function setRewardsProxy(address _rewardsProxy) external; /* GETTERS *****************************************************************************************************************/ /** * @notice Returns the amount of shares minted for the theorical deposited amount of assets * @param assets The amount of assets deposited * @return The amount of shares minted */ function previewDeposit(uint256 assets) external view returns (uint256); /** * @notice Returns the amount of shares minted for the theorical deposited amount of IBT * @param ibts The amount of IBT deposited * @return The amount of shares minted */ function previewDepositIBT(uint256 ibts) external view returns (uint256); /** * @notice Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * @param receiver The receiver of the shares * @return The maximum amount of assets that can be deposited */ function maxDeposit(address receiver) external view returns (uint256); /** * @notice Returns the theorical amount of shares that need to be burnt to receive assets of underlying * @param assets The amount of assets to receive * @return The amount of shares burnt */ function previewWithdraw(uint256 assets) external view returns (uint256); /** * @notice Returns the theorical amount of shares that need to be burnt to receive amount of IBT * @param ibts The amount of IBT to receive * @return The amount of shares burnt */ function previewWithdrawIBT(uint256 ibts) external view returns (uint256); /** * @notice Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * @param owner The owner of the Vault shares * @return The maximum amount of assets that can be withdrawn */ function maxWithdraw(address owner) external view returns (uint256); /** * @notice Returns the maximum amount of the IBT that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * @param owner The owner of the Vault shares * @return The maximum amount of IBT that can be withdrawn */ function maxWithdrawIBT(address owner) external view returns (uint256); /** * @notice Returns the amount of assets received for the theorical amount of burnt shares * @param shares The amount of shares to burn * @return The amount of assets received */ function previewRedeem(uint256 shares) external view returns (uint256); /** * @notice Returns the amount of IBT received for the theorical amount of burnt shares * @param shares The amount of shares to burn * @return The amount of IBT received */ function previewRedeemForIBT(uint256 shares) external view returns (uint256); /** * @notice Returns the maximum amount of Vault shares that can be redeemed by the owner * @notice This function behaves differently before and after expiry. Before expiry an equal amount of PT and YT * needs to be burnt, while after expiry only PTs are burnt. * @param owner The owner of the shares * @return The maximum amount of shares that can be redeemed */ function maxRedeem(address owner) external view returns (uint256); /** * Returns the total amount of the underlying asset that is owned by the Vault in the form of IBT. */ function totalAssets() external view returns (uint256); /** * @notice Converts an underlying amount in principal. Equivalent to ERC-4626's convertToShares method. * @param underlyingAmount The amount of underlying (or assets) to convert * @return The resulting amount of principal (or shares) */ function convertToPrincipal(uint256 underlyingAmount) external view returns (uint256); /** * @notice Converts a principal amount in underlying. Equivalent to ERC-4626's convertToAssets method. * @param principalAmount The amount of principal (or shares) to convert * @return The resulting amount of underlying (or assets) */ function convertToUnderlying(uint256 principalAmount) external view returns (uint256); /** * @notice Returns whether or not the contract is paused. * @return true if the contract is paused, and false otherwise */ function paused() external view returns (bool); /** * @notice Returns the unix timestamp (uint256) at which the PT contract expires * @return The unix timestamp (uint256) when PTs become redeemable */ function maturity() external view returns (uint256); /** * @notice Returns the duration of the PT contract * @return The duration (in s) to expiry/maturity of the PT contract */ function getDuration() external view returns (uint256); /** * @notice Returns the address of the underlying token (or asset). Equivalent to ERC-4626's asset method. * @return The address of the underlying token (or asset) */ function underlying() external view returns (address); /** * @notice Returns the IBT address of the PT contract * @return ibt The address of the IBT */ function getIBT() external view returns (address ibt); /** * @notice Returns the yt address of the PT contract * @return yt The address of the yt */ function getYT() external view returns (address yt); /** * @notice Returns the current ibtRate * @return The current ibtRate */ function getIBTRate() external view returns (uint256); /** * @notice Returns the current ptRate * @return The current ptRate */ function getPTRate() external view returns (uint256); /** * @notice Returns 1 unit of IBT * @return The IBT unit */ function getIBTUnit() external view returns (uint256); /** * @notice Get the unclaimed fees in IBT * @return The unclaimed fees in IBT */ function getUnclaimedFeesInIBT() external view returns (uint256); /** * @notice Get the total collected fees in IBT (claimed and unclaimed) * @return The total fees in IBT */ function getTotalFeesInIBT() external view returns (uint256); /** * @notice Get the tokenization fee of the PT * @return The tokenization fee */ function getTokenizationFee() external view returns (uint256); /** * @notice Get the current IBT yield of the user * @param _user The address of the user to get the current yield from * @return The yield of the user in IBT */ function getCurrentYieldOfUserInIBT(address _user) external view returns (uint256); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.20; interface IRateAdjustmentOracle { /* ERRORS *****************************************************************************************************************/ error AddressError(); error AddressesNotSet(); error PostInitCalledBeforeInit(); /* Functions *****************************************************************************************************************/ /** * @notice First function called after contract depoyment, sets the contract authority * @param _initialAuthority Initial authority of the rate oracle */ function initialize(address _initialAuthority) external; /** * @dev Function called after deployment of the associated Curve Pool to initialize the remaining state. * @dev Deployment of the Curve Pool requires the address of the rate adjustment oracle, while the rate adjustment * @dev oracle needs the address of the Curve Pool to make function calls. Therefore, initialization is done in two steps. * @param _startTimestamp The PT deployment time * @param _expiry The PT expiry * @param _initialPrice The initial PT/IBT exchange rate * @param _curvePoolAddress Address of the curve pool */ function post_initialize( uint256 _startTimestamp, uint256 _expiry, uint256 _initialPrice, address _curvePoolAddress ) external; /** * @notice Function reporting the oracle value used in curve stableswap pool * @return Multiplicative adjustment factor for last_prices in between each two trades */ function value() external view returns (uint256); /** * @notice Function to change the current initial price * @param _newInitialPrice new initial price we want to set */ function setInitialPrice(uint256 _newInitialPrice) external; /** * @notice Getter for the current initial price * @return current initial price */ function getInitialPrice() external view returns (uint256); /** * @notice Getter for the curve pool address of the rate adjustment oracle * @return curve pool address */ function getCurvePoolAddress() external view returns (address); /** * Getter for the start time of the pt * @return start time of the pt */ function getStartTime() external view returns (uint256); /** * @notice Getter for the expiry of the pt * @return expiry of the pt */ function getExpiry() external view returns (uint256); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.4; interface IStableSwapNG { function A() external view returns (uint256); function A_precise() external view returns (uint256); function DOMAIN_SEPARATOR() external view returns (bytes32); function D_ma_time() external view returns (uint256); function D_oracle() external view returns (uint256); function N_COINS() external view returns (uint256); function add_liquidity( uint256[] memory _amounts, uint256 _min_mint_amount, address _receiver ) external returns (uint256); function admin_balances(uint256 arg0) external view returns (uint256); function admin_fee() external view returns (uint256); function allowance(address arg0, address arg1) external view returns (uint256); function approve(address _spender, uint256 _value) external returns (bool); function balanceOf(address arg0) external view returns (uint256); function balances(uint256 i) external view returns (uint256); function calc_token_amount( uint256[] memory _amounts, bool _is_deposit ) external view returns (uint256); function calc_withdraw_one_coin(uint256 _burn_amount, int128 i) external view returns (uint256); function coins(uint256 arg0) external view returns (address); function decimals() external view returns (uint8); function dynamic_fee(int128 i, int128 j) external view returns (uint256); function ema_price(uint256 i) external view returns (uint256); function exchange(int128 i, int128 j, uint256 _dx, uint256 _min_dy) external returns (uint256); function exchange( int128 i, int128 j, uint256 _dx, uint256 _min_dy, address _receiver ) external returns (uint256); function exchange_received( int128 i, int128 j, uint256 _dx, uint256 _min_dy ) external returns (uint256); function exchange_received( int128 i, int128 j, uint256 _dx, uint256 _min_dy, address _receiver ) external returns (uint256); function fee() external view returns (uint256); function future_A() external view returns (uint256); function future_A_time() external view returns (uint256); function get_balances() external view returns (uint256[] memory); function get_dx(int128 i, int128 j, uint256 dy) external view returns (uint256); function get_dy(int128 i, int128 j, uint256 dx) external view returns (uint256); function get_p(uint256 i) external view returns (uint256); function get_virtual_price() external view returns (uint256); function initial_A() external view returns (uint256); function initial_A_time() external view returns (uint256); function last_price(uint256 i) external view returns (uint256); function ma_exp_time() external view returns (uint256); function ma_last_time() external view returns (uint256); function name() external view returns (string memory); function nonces(address arg0) external view returns (uint256); function offpeg_fee_multiplier() external view returns (uint256); function permit( address _owner, address _spender, uint256 _value, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external returns (bool); function price_oracle(uint256 i) external view returns (uint256); function ramp_A(uint256 _future_A, uint256 _future_time) external; function remove_liquidity( uint256 _burn_amount, uint256[] memory _min_amounts ) external returns (uint256[] memory); function remove_liquidity( uint256 _burn_amount, uint256[] memory _min_amounts, address _receiver ) external returns (uint256[] memory); function remove_liquidity( uint256 _burn_amount, uint256[] memory _min_amounts, address _receiver, bool _claim_admin_fees ) external returns (uint256[] memory); function remove_liquidity_imbalance( uint256[] memory _amounts, uint256 _max_burn_amount ) external returns (uint256); function remove_liquidity_imbalance( uint256[] memory _amounts, uint256 _max_burn_amount, address _receiver ) external returns (uint256); function remove_liquidity_one_coin( uint256 _burn_amount, int128 i, uint256 _min_received ) external returns (uint256); function remove_liquidity_one_coin( uint256 _burn_amount, int128 i, uint256 _min_received, address _receiver ) external returns (uint256); function salt() external view returns (bytes32); function set_ma_exp_time(uint256 _ma_exp_time, uint256 _D_ma_time) external; function set_new_fee(uint256 _new_fee, uint256 _new_offpeg_fee_multiplier) external; function stop_ramp_A() external; function stored_rates() external view returns (uint256[] memory); function symbol() external view returns (string memory); function totalSupply() external view returns (uint256); function transfer(address _to, uint256 _value) external returns (bool); function transferFrom(address _from, address _to, uint256 _value) external returns (bool); function version() external view returns (string memory); function withdraw_admin_fees() external; }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.8.0; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.20; import "../interfaces/IRateAdjustmentOracle.sol"; import "openzeppelin-math/Math.sol"; import "./LogExpMath.sol"; library RateAdjustmentMath { using Math for uint256; uint256 public constant UNIT = 10 ** 18; /** * @notice Computes the rate of the Principal Token in underlying, given the initial discount in underlying. * @notice This rate is used internally in the Curve Pool for price adjustment. The oracle quotes the Principal Token * @notice price in unerlying according to P(t,T)=exp(-r(T-t)), where one assumes that the life of the instrument starts * @notice at 0, the current timestamp is t, and the expiry is T >= t. Here r represents the instantaneous forward rate. * @notice This formula is equivalent to what is given below. * @param initialTimestamp Timestamp of deployment of the Principal Token * @param currentTimestamp Current timestamp * @param expiryTimestamp Expiry Timestamp of the Principal Token * @param initialPrice Value of the Principal Token in underlying at the beginning of the term. Uniquely specifies * the discount and the initial implied rate. * @param futurePTValue Face value of a unit of Principal Token. Can be less than one unit of unerlying if the associated * ibt suffered from negative interest rates. * @return rate The rate of the PT in underlying at time current_timestamp */ function getAdjustmentFactor( uint256 initialTimestamp, uint256 currentTimestamp, uint256 expiryTimestamp, uint256 initialPrice, uint256 futurePTValue ) internal pure returns (uint256 rate) { // The value of an expired bond does not change in further time. // The bond is redeemable for its face value. if (currentTimestamp > expiryTimestamp) { return futurePTValue; } // P(t,T) = ptRate * init_price ^ ((T-t)/(T-t0)) uint256 exp = (expiryTimestamp - currentTimestamp).mulDiv( UNIT, expiryTimestamp - initialTimestamp ); rate = futurePTValue.mulDiv(LogExpMath.pow(initialPrice, exp), UNIT); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.20; /** * @title RayMath library * @author Spectra Finance * @notice Provides conversions for/to any decimal tokens to/from ray. * @dev Conversions from Ray are rounded down. */ library RayMath { /// @dev 27 decimal unit uint256 public constant RAY_UNIT = 1e27; uint256 public constant RAY_DECIMALS = 27; /** * @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals. * @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals. * @param _decimals The target decimal precision for the converted amount. * @return b The amount converted from Ray to the specified decimal precision. */ function fromRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) { uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals); assembly { b := div(_a, decimals_ratio) } } /** * @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals. * @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals. * @param _decimals The target decimal precision for the converted amount. * @param _roundUp If true, the function rounds up the result to the nearest integer value. * If false, it truncates (rounds down) to the nearest integer. * @return b The amount converted from Ray to the specified decimal precision, rounded as specified. */ function fromRay( uint256 _a, uint256 _decimals, bool _roundUp ) internal pure returns (uint256 b) { uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals); assembly { b := div(_a, decimals_ratio) if and(eq(_roundUp, 1), gt(mod(_a, decimals_ratio), 0)) { b := add(b, 1) } } } /** * @dev Converts a value with a specified number of decimals to Ray (27-decimal precision). * @param _a The amount to be converted, specified in a decimal format. * @param _decimals The number of decimals in the representation of 'a'. * @return b The amount in Ray, converted from the specified decimal precision. * Ensures that the conversion maintains the value's integrity (no overflow). */ function toRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) { uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals); // to avoid overflow, b/decimals_ratio == _a assembly { b := mul(_a, decimals_ratio) if iszero(eq(div(b, decimals_ratio), _a)) { revert(0, 0) } } } }
{ "evmVersion": "shanghai", "libraries": {}, "metadata": { "appendCBOR": true, "bytecodeHash": "ipfs", "useLiteralContent": false }, "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [ "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/", "openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/", "openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/", "openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/", "openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/", "openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/", "openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/", "config/=lib/spectra-contracts-configs/script/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "DiamondRouter/=lib/DiamondRouter/", "halmos-cheatcodes/=lib/DiamondRouter/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/", "solidity-stringutils/=lib/DiamondRouter/lib/solidity-stringutils/", "spectra-contracts-configs/=lib/spectra-contracts-configs/" ], "viaIR": false }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"authority","type":"address"}],"name":"AccessManagedInvalidAuthority","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"uint32","name":"delay","type":"uint32"}],"name":"AccessManagedRequiredDelay","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"AccessManagedUnauthorized","type":"error"},{"inputs":[],"name":"AddressError","type":"error"},{"inputs":[],"name":"AddressesNotSet","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"PostInitCalledBeforeInit","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_previousInitialPrice","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"_newInitialPrice","type":"uint256"}],"name":"InitialPriceChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurvePoolAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getExpiry","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInitialPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_initialAuthority","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isConsumingScheduledOp","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_initialTimestamp","type":"uint256"},{"internalType":"uint256","name":"_expiry","type":"uint256"},{"internalType":"uint256","name":"_initialPrice","type":"uint256"},{"internalType":"address","name":"_curvePoolAddress","type":"address"}],"name":"post_initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newInitialPrice","type":"uint256"}],"name":"setInitialPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"value","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
608060405234801561000f575f80fd5b5061001861001d565b6100cf565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff161561006d5760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b03908116146100cc5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b611b10806100dc5f395ff3fe608060405234801561000f575f80fd5b50600436106100a6575f3560e01c80639f4ba0ee1161006e5780639f4ba0ee14610112578063bf7e214f14610125578063c4d66de814610145578063c828371e14610158578063d568499c14610160578063f61c266b14610170575f80fd5b806306f660ef146100aa5780633fa4f245146100c15780637a9e5e4b146100c95780638fb36037146100de57806395eeb400146100ff575b5f80fd5b6003545b6040519081526020015b60405180910390f35b6100ae610178565b6100dc6100d7366004611762565b610558565b005b6100e66105e3565b6040516001600160e01b031990911681526020016100b8565b6100dc61010d36600461177d565b610619565b6100dc6101203660046117bb565b610750565b61012d61078c565b6040516001600160a01b0390911681526020016100b8565b6100dc610153366004611762565b6107a7565b6001546100ae565b5f546001600160a01b031661012d565b6002546100ae565b5f80546001600160a01b03166101a157604051630537d15b60e41b815260040160405180910390fd5b5f805460405163c661065760e01b8152600160048201526001600160a01b039091169063c661065790602401602060405180830381865afa1580156101e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061020c91906117d2565b5f805460405163c661065760e01b81526004810183905292935090916001600160a01b039091169063c661065790602401602060405180830381865afa158015610258573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027c91906117d2565b90505f816001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102bb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102df91906117d2565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561031e573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061034291906117ed565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610381573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103a591906117ed565b90505f6103b383600a611901565b90505f6103c183600a611901565b90505f6103d260ff8516601261190f565b6103dd90600a611922565b604051631dc7f52160e01b8152600481018590526001600160a01b038a1690631dc7f52190602401602060405180830381865afa158015610420573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610444919061192d565b61044e9190611944565b60405163266d6a8360e11b8152600481018590529091505f906001600160a01b03891690634cdad50690602401602060405180830381865afa158015610496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104ba919061192d565b6040516303d1689d60e11b8152600481018690526001600160a01b038a16906307a2d13a90602401602060405180830381865afa1580156104fd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610521919061192d565b61052b9084611944565b610535919061196f565b905061054a60015442600254600354856108d8565b995050505050505050505090565b3361056161078c565b6001600160a01b0316816001600160a01b0316146105a15760405162d1953b60e31b81526001600160a01b03821660048201526024015b60405180910390fd5b816001600160a01b03163b5f036105d6576040516361798f2f60e11b81526001600160a01b0383166004820152602401610598565b6105df8261093c565b5050565b5f80516020611abb83398151915280545f9190600160a01b900460ff1661060a575f610613565b638fb3603760e01b5b91505090565b610625335b5f3661099c565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805460029190600160401b900460ff168061066f5750805467ffffffffffffffff808416911610155b1561068d5760405163f92ee8a960e01b815260040160405180910390fd5b805468ffffffffffffffffff191667ffffffffffffffff831617600160401b1781556001600160a01b0383166106d657604051630c59659760e31b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b038516179055600186905560028590556003849055805460ff60401b1916815560405167ffffffffffffffff831681527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906020015b60405180910390a1505050505050565b6107593361061e565b6003546040518291907f792ab2554bf1289b3eef409b266807d65198c165cf023652066229da587dd080905f90a3600355565b5f80516020611abb833981519152546001600160a01b031690565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156107ec5750825b90505f8267ffffffffffffffff1660011480156108085750303b155b905081158015610816575080155b156108345760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561085e57845460ff60401b1916600160401b1785555b6001600160a01b03861661088557604051630c59659760e31b815260040160405180910390fd5b61088e86610a92565b83156108d057845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602001610740565b505050505050565b5f838511156108e8575080610933565b5f610910670de0b6b3a76400006108ff898861190f565b610909898961190f565b9190610aa6565b905061092f61091f8583610b66565b8490670de0b6b3a7640000610aa6565b9150505b95945050505050565b5f80516020611abb83398151915280546001600160a01b0383166001600160a01b03199091168117825560408051918252517f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9181900360200190a15050565b5f80516020611abb8339815191525f806109d46109b761078c565b87306109c660045f8a8c61198e565b6109cf916119b5565b610d15565b91509150816108d05763ffffffff811615610a6f57825460ff60a01b1916600160a01b178355610a0261078c565b6001600160a01b03166394c7d7ee8787876040518463ffffffff1660e01b8152600401610a31939291906119e5565b5f604051808303815f87803b158015610a48575f80fd5b505af1158015610a5a573d5f803e3d5ffd5b5050845460ff60a01b19168555506108d09050565b60405162d1953b60e31b81526001600160a01b0387166004820152602401610598565b610a9a610e1d565b610aa381610e68565b50565b5f838302815f1985870982811083820303915050805f03610ada57838281610ad057610ad061195b565b0492505050610b5f565b808411610afa5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b5f815f03610b7d5750670de0b6b3a7640000610d0f565b825f03610b8b57505f610d0f565b600160ff1b8310610bd05760405162461bcd60e51b815260206004820152600f60248201526e78206f7574206f6620626f756e647360881b6044820152606401610598565b82770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328310610c2a5760405162461bcd60e51b815260206004820152600f60248201526e79206f7574206f6620626f756e647360881b6044820152606401610598565b825f670c7d713b49da000083138015610c4a5750670f43fc2c04ee000083125b15610c80575f610c5984610e79565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050610c8e565b81610c8a84610f96565b0290505b670de0b6b3a76400009005680238fd42c5cf03ffff198112801590610cbc575068070c1cc73b00c800008113155b610d005760405162461bcd60e51b815260206004820152601560248201527470726f64756374206f7574206f6620626f756e647360581b6044820152606401610598565b610d098161133b565b93505050505b92915050565b6040516001600160a01b03848116602483015283811660448301526001600160e01b0319831660648301525f9182918291829189169060840160408051601f198184030181529181526020820180516001600160e01b031663b700961360e01b17905251610d839190611a24565b5f60405180830381855afa9150503d805f8114610dbb576040519150601f19603f3d011682016040523d82523d5f602084013e610dc0565b606091505b50915091508115610e12576040815110610df25780806020019051810190610de89190611a64565b9094509250610e12565b6020815110610e125780806020019051810190610e0f9190611aa1565b93505b505094509492505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610e6657604051631afcd79f60e31b815260040160405180910390fd5b565b610e70610e1d565b610aa38161093c565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281610eb957610eb961195b565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a7640000821215610fd557610fcd826a0c097ce7bc90715b34b9f160241b81610fc757610fc761195b565b05610f96565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261102557770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261105d576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126110a5576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126110e0576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261111757693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261114e57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126111835768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126111ae57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126111e3576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312611218576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261124c576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611280576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816112a8576112a861195b565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b5f680238fd42c5cf03ffff19821215801561135f575068070c1cc73b00c800008213155b61139e5760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610598565b5f8212156113d4576113b1825f0361133b565b6a0c097ce7bc90715b34b9f160241b816113cd576113cd61195b565b0592915050565b5f6806f05b59d3b2000000831261141357506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000611449565b6803782dace9d9000000831261144557506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380611449565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126114995768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d63100000084126114d5576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261150f57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412611549576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261158257680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126115bb5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126115f4576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261162d5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6001600160a01b0381168114610aa3575f80fd5b5f60208284031215611772575f80fd5b8135610b5f8161174e565b5f805f8060808587031215611790575f80fd5b84359350602085013592506040850135915060608501356117b08161174e565b939692955090935050565b5f602082840312156117cb575f80fd5b5035919050565b5f602082840312156117e2575f80fd5b8151610b5f8161174e565b5f602082840312156117fd575f80fd5b815160ff81168114610b5f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b600181815b8085111561185b57815f19048211156118415761184161180d565b8085161561184e57918102915b93841c9390800290611826565b509250929050565b5f8261187157506001610d0f565b8161187d57505f610d0f565b8160018114611893576002811461189d576118b9565b6001915050610d0f565b60ff8411156118ae576118ae61180d565b50506001821b610d0f565b5060208310610133831016604e8410600b84101617156118dc575081810a610d0f565b6118e68383611821565b805f19048211156118f9576118f961180d565b029392505050565b5f610b5f60ff841683611863565b81810381811115610d0f57610d0f61180d565b5f610b5f8383611863565b5f6020828403121561193d575f80fd5b5051919050565b8082028115828204841417610d0f57610d0f61180d565b634e487b7160e01b5f52601260045260245ffd5b5f8261198957634e487b7160e01b5f52601260045260245ffd5b500490565b5f808585111561199c575f80fd5b838611156119a8575f80fd5b5050820193919092039150565b6001600160e01b031981358181169160048510156119dd5780818660040360031b1b83161692505b505092915050565b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f82515f5b81811015611a435760208186018101518583015201611a29565b505f920191825250919050565b80518015158114611a5f575f80fd5b919050565b5f8060408385031215611a75575f80fd5b611a7e83611a50565b9150602083015163ffffffff81168114611a96575f80fd5b809150509250929050565b5f60208284031215611ab1575f80fd5b610b5f82611a5056fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a264697066735822122049822f8cbe19ee2e8b43b57fe7369e25dc64fa149405b6e58e3c263f17def12e64736f6c63430008140033
Deployed Bytecode
0x608060405234801561000f575f80fd5b50600436106100a6575f3560e01c80639f4ba0ee1161006e5780639f4ba0ee14610112578063bf7e214f14610125578063c4d66de814610145578063c828371e14610158578063d568499c14610160578063f61c266b14610170575f80fd5b806306f660ef146100aa5780633fa4f245146100c15780637a9e5e4b146100c95780638fb36037146100de57806395eeb400146100ff575b5f80fd5b6003545b6040519081526020015b60405180910390f35b6100ae610178565b6100dc6100d7366004611762565b610558565b005b6100e66105e3565b6040516001600160e01b031990911681526020016100b8565b6100dc61010d36600461177d565b610619565b6100dc6101203660046117bb565b610750565b61012d61078c565b6040516001600160a01b0390911681526020016100b8565b6100dc610153366004611762565b6107a7565b6001546100ae565b5f546001600160a01b031661012d565b6002546100ae565b5f80546001600160a01b03166101a157604051630537d15b60e41b815260040160405180910390fd5b5f805460405163c661065760e01b8152600160048201526001600160a01b039091169063c661065790602401602060405180830381865afa1580156101e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061020c91906117d2565b5f805460405163c661065760e01b81526004810183905292935090916001600160a01b039091169063c661065790602401602060405180830381865afa158015610258573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027c91906117d2565b90505f816001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102bb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102df91906117d2565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561031e573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061034291906117ed565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610381573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103a591906117ed565b90505f6103b383600a611901565b90505f6103c183600a611901565b90505f6103d260ff8516601261190f565b6103dd90600a611922565b604051631dc7f52160e01b8152600481018590526001600160a01b038a1690631dc7f52190602401602060405180830381865afa158015610420573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610444919061192d565b61044e9190611944565b60405163266d6a8360e11b8152600481018590529091505f906001600160a01b03891690634cdad50690602401602060405180830381865afa158015610496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104ba919061192d565b6040516303d1689d60e11b8152600481018690526001600160a01b038a16906307a2d13a90602401602060405180830381865afa1580156104fd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610521919061192d565b61052b9084611944565b610535919061196f565b905061054a60015442600254600354856108d8565b995050505050505050505090565b3361056161078c565b6001600160a01b0316816001600160a01b0316146105a15760405162d1953b60e31b81526001600160a01b03821660048201526024015b60405180910390fd5b816001600160a01b03163b5f036105d6576040516361798f2f60e11b81526001600160a01b0383166004820152602401610598565b6105df8261093c565b5050565b5f80516020611abb83398151915280545f9190600160a01b900460ff1661060a575f610613565b638fb3603760e01b5b91505090565b610625335b5f3661099c565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805460029190600160401b900460ff168061066f5750805467ffffffffffffffff808416911610155b1561068d5760405163f92ee8a960e01b815260040160405180910390fd5b805468ffffffffffffffffff191667ffffffffffffffff831617600160401b1781556001600160a01b0383166106d657604051630c59659760e31b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b038516179055600186905560028590556003849055805460ff60401b1916815560405167ffffffffffffffff831681527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906020015b60405180910390a1505050505050565b6107593361061e565b6003546040518291907f792ab2554bf1289b3eef409b266807d65198c165cf023652066229da587dd080905f90a3600355565b5f80516020611abb833981519152546001600160a01b031690565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156107ec5750825b90505f8267ffffffffffffffff1660011480156108085750303b155b905081158015610816575080155b156108345760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561085e57845460ff60401b1916600160401b1785555b6001600160a01b03861661088557604051630c59659760e31b815260040160405180910390fd5b61088e86610a92565b83156108d057845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602001610740565b505050505050565b5f838511156108e8575080610933565b5f610910670de0b6b3a76400006108ff898861190f565b610909898961190f565b9190610aa6565b905061092f61091f8583610b66565b8490670de0b6b3a7640000610aa6565b9150505b95945050505050565b5f80516020611abb83398151915280546001600160a01b0383166001600160a01b03199091168117825560408051918252517f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9181900360200190a15050565b5f80516020611abb8339815191525f806109d46109b761078c565b87306109c660045f8a8c61198e565b6109cf916119b5565b610d15565b91509150816108d05763ffffffff811615610a6f57825460ff60a01b1916600160a01b178355610a0261078c565b6001600160a01b03166394c7d7ee8787876040518463ffffffff1660e01b8152600401610a31939291906119e5565b5f604051808303815f87803b158015610a48575f80fd5b505af1158015610a5a573d5f803e3d5ffd5b5050845460ff60a01b19168555506108d09050565b60405162d1953b60e31b81526001600160a01b0387166004820152602401610598565b610a9a610e1d565b610aa381610e68565b50565b5f838302815f1985870982811083820303915050805f03610ada57838281610ad057610ad061195b565b0492505050610b5f565b808411610afa5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b5f815f03610b7d5750670de0b6b3a7640000610d0f565b825f03610b8b57505f610d0f565b600160ff1b8310610bd05760405162461bcd60e51b815260206004820152600f60248201526e78206f7574206f6620626f756e647360881b6044820152606401610598565b82770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328310610c2a5760405162461bcd60e51b815260206004820152600f60248201526e79206f7574206f6620626f756e647360881b6044820152606401610598565b825f670c7d713b49da000083138015610c4a5750670f43fc2c04ee000083125b15610c80575f610c5984610e79565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050610c8e565b81610c8a84610f96565b0290505b670de0b6b3a76400009005680238fd42c5cf03ffff198112801590610cbc575068070c1cc73b00c800008113155b610d005760405162461bcd60e51b815260206004820152601560248201527470726f64756374206f7574206f6620626f756e647360581b6044820152606401610598565b610d098161133b565b93505050505b92915050565b6040516001600160a01b03848116602483015283811660448301526001600160e01b0319831660648301525f9182918291829189169060840160408051601f198184030181529181526020820180516001600160e01b031663b700961360e01b17905251610d839190611a24565b5f60405180830381855afa9150503d805f8114610dbb576040519150601f19603f3d011682016040523d82523d5f602084013e610dc0565b606091505b50915091508115610e12576040815110610df25780806020019051810190610de89190611a64565b9094509250610e12565b6020815110610e125780806020019051810190610e0f9190611aa1565b93505b505094509492505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610e6657604051631afcd79f60e31b815260040160405180910390fd5b565b610e70610e1d565b610aa38161093c565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281610eb957610eb961195b565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a7640000821215610fd557610fcd826a0c097ce7bc90715b34b9f160241b81610fc757610fc761195b565b05610f96565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261102557770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261105d576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126110a5576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126110e0576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261111757693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261114e57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126111835768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126111ae57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126111e3576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312611218576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261124c576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611280576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816112a8576112a861195b565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b5f680238fd42c5cf03ffff19821215801561135f575068070c1cc73b00c800008213155b61139e5760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610598565b5f8212156113d4576113b1825f0361133b565b6a0c097ce7bc90715b34b9f160241b816113cd576113cd61195b565b0592915050565b5f6806f05b59d3b2000000831261141357506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000611449565b6803782dace9d9000000831261144557506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380611449565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126114995768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d63100000084126114d5576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261150f57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412611549576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261158257680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126115bb5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126115f4576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261162d5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6001600160a01b0381168114610aa3575f80fd5b5f60208284031215611772575f80fd5b8135610b5f8161174e565b5f805f8060808587031215611790575f80fd5b84359350602085013592506040850135915060608501356117b08161174e565b939692955090935050565b5f602082840312156117cb575f80fd5b5035919050565b5f602082840312156117e2575f80fd5b8151610b5f8161174e565b5f602082840312156117fd575f80fd5b815160ff81168114610b5f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b600181815b8085111561185b57815f19048211156118415761184161180d565b8085161561184e57918102915b93841c9390800290611826565b509250929050565b5f8261187157506001610d0f565b8161187d57505f610d0f565b8160018114611893576002811461189d576118b9565b6001915050610d0f565b60ff8411156118ae576118ae61180d565b50506001821b610d0f565b5060208310610133831016604e8410600b84101617156118dc575081810a610d0f565b6118e68383611821565b805f19048211156118f9576118f961180d565b029392505050565b5f610b5f60ff841683611863565b81810381811115610d0f57610d0f61180d565b5f610b5f8383611863565b5f6020828403121561193d575f80fd5b5051919050565b8082028115828204841417610d0f57610d0f61180d565b634e487b7160e01b5f52601260045260245ffd5b5f8261198957634e487b7160e01b5f52601260045260245ffd5b500490565b5f808585111561199c575f80fd5b838611156119a8575f80fd5b5050820193919092039150565b6001600160e01b031981358181169160048510156119dd5780818660040360031b1b83161692505b505092915050565b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f82515f5b81811015611a435760208186018101518583015201611a29565b505f920191825250919050565b80518015158114611a5f575f80fd5b919050565b5f8060408385031215611a75575f80fd5b611a7e83611a50565b9150602083015163ffffffff81168114611a96575f80fd5b809150509250929050565b5f60208284031215611ab1575f80fd5b610b5f82611a5056fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a264697066735822122049822f8cbe19ee2e8b43b57fe7369e25dc64fa149405b6e58e3c263f17def12e64736f6c63430008140033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.