ETH Price: $4,492.42 (+0.50%)

Contract

0xE9B1146E1d6b118caC53B3c5a646378D3d1BEa0b

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
RateAdjustmentOracle

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import "../interfaces/IRateAdjustmentOracle.sol";
import "../interfaces/IPrincipalToken.sol";
import "../interfaces/IStableSwapNG.sol";
import "../libraries/RateAdjustmentMath.sol";
import "../libraries/RayMath.sol";
import "openzeppelin-math/Math.sol";
import "openzeppelin-contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol";
import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC4626} from "openzeppelin-contracts/interfaces/IERC4626.sol";

contract RateAdjustmentOracle is AccessManagedUpgradeable, IRateAdjustmentOracle {
    using Math for uint256;
    using RayMath for uint256;

    // state
    address private curvePoolAddress;
    uint256 private startTime;
    uint256 private expiry;
    uint256 private initialPrice;

    // constants
    uint64 private constant POST_INIT_ID = 2;
    uint256 private constant ORACLE_DECIMALS = 18;

    /* EVENTS
     *****************************************************************************************************************/

    event InitialPriceChanged(
        uint256 indexed _previousInitialPrice,
        uint256 indexed _newInitialPrice
    );

    /* CONSTRUCTOR
     *****************************************************************************************************************/
    constructor() {
        _disableInitializers();
    }

    /* INITIALIZERS
     *****************************************************************************************************************/

    /** @dev See {IRateAdjustmentOracle-initialize}. */
    function initialize(address _initialAuthority) external initializer {
        if (_initialAuthority == address(0)) {
            revert AddressError();
        }
        __AccessManaged_init(_initialAuthority);
    }

    /** @dev See {IRateAdjustmentOracle-post_initialize}. */
    function post_initialize(
        uint256 _initialTimestamp,
        uint256 _expiry,
        uint256 _initialPrice,
        address _curvePoolAddress
    ) external override restricted reinitializer(POST_INIT_ID) {
        if (_curvePoolAddress == address(0)) {
            revert AddressError();
        }

        curvePoolAddress = _curvePoolAddress;
        startTime = _initialTimestamp;
        expiry = _expiry;
        initialPrice = _initialPrice;
    }

    /* FUNCTIONS
     *****************************************************************************************************************/

    /** @dev See {IRateAdjustmentOracle-value}. */
    function value() external view returns (uint256 rate) {
        if (curvePoolAddress == address(0)) {
            revert AddressesNotSet();
        }
        // Get the future PT value in 18 decimals
        address ptAddress = IStableSwapNG(curvePoolAddress).coins(1);
        address ibtAddress = IStableSwapNG(curvePoolAddress).coins(0);
        address underlyingAddress = IERC4626(ibtAddress).asset();

        uint8 ibtDecimals = IERC20Metadata(ibtAddress).decimals();
        uint8 underlyingDecimals = IERC20Metadata(underlyingAddress).decimals();

        uint256 ibtUnit = 10 ** ibtDecimals;
        uint256 underlyingUnit = 10 ** underlyingDecimals;
        uint256 futurePTValue = IPrincipalToken(ptAddress).convertToUnderlying(ibtUnit) *
            10 ** (ORACLE_DECIMALS - underlyingDecimals);

        // @dev: Curve IERC4626 oracle uses convertToAssets, which is imprecise, hence we correct it here with previewRedeem
        uint256 adjustedFuturePTValue = (futurePTValue *
            IERC4626(ibtAddress).convertToAssets(ibtUnit)) /
            IERC4626(ibtAddress).previewRedeem(ibtUnit);

        // Get the adjustment factor
        rate = RateAdjustmentMath.getAdjustmentFactor(
            startTime,
            block.timestamp,
            expiry,
            initialPrice,
            adjustedFuturePTValue
        );
    }

    /** @dev See {IRateAdjustmentOracle-setInitialPrice}. */
    function setInitialPrice(uint256 _newInitialPrice) external override restricted {
        emit InitialPriceChanged(initialPrice, _newInitialPrice);
        initialPrice = _newInitialPrice;
    }

    /** @dev See {IRateAdjustmentOracle-getInitialPrice}. */
    function getInitialPrice() external view returns (uint256) {
        return initialPrice;
    }

    /** @dev See {IRateAdjustmentOracle-getCurvePoolAddress}. */
    function getCurvePoolAddress() external view returns (address) {
        return curvePoolAddress;
    }

    /** @dev See {IRateAdjustmentOracle-getStartTime}. */
    function getStartTime() external view returns (uint256) {
        return startTime;
    }

    /** @dev See {IRateAdjustmentOracle-getExpiry}. */
    function getExpiry() external view returns (uint256) {
        return expiry;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManaged.sol)

pragma solidity ^0.8.20;

import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol";
import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol";
import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol";
import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
 * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
 * implementing a policy that allows certain callers to access certain functions.
 *
 * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
 * functions, and ideally only used in `external` functions. See {restricted}.
 */
abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged {
    /// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged
    struct AccessManagedStorage {
        address _authority;

        bool _consumingSchedule;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00;

    function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) {
        assembly {
            $.slot := AccessManagedStorageLocation
        }
    }

    /**
     * @dev Initializes the contract connected to an initial authority.
     */
    function __AccessManaged_init(address initialAuthority) internal onlyInitializing {
        __AccessManaged_init_unchained(initialAuthority);
    }

    function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing {
        _setAuthority(initialAuthority);
    }

    /**
     * @dev Restricts access to a function as defined by the connected Authority for this contract and the
     * caller and selector of the function that entered the contract.
     *
     * [IMPORTANT]
     * ====
     * In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
     * functions that are used as external entry points and are not called internally. Unless you know what you're
     * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
     * implications! This is because the permissions are determined by the function that entered the contract, i.e. the
     * function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
     * ====
     *
     * [WARNING]
     * ====
     * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
     * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
     * functions are the only execution paths where a function selector cannot be unambiguosly determined from the calldata
     * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
     * if no calldata is provided. (See {_checkCanCall}).
     *
     * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
     * ====
     */
    modifier restricted() {
        _checkCanCall(_msgSender(), _msgData());
        _;
    }

    /// @inheritdoc IAccessManaged
    function authority() public view virtual returns (address) {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        return $._authority;
    }

    /// @inheritdoc IAccessManaged
    function setAuthority(address newAuthority) public virtual {
        address caller = _msgSender();
        if (caller != authority()) {
            revert AccessManagedUnauthorized(caller);
        }
        if (newAuthority.code.length == 0) {
            revert AccessManagedInvalidAuthority(newAuthority);
        }
        _setAuthority(newAuthority);
    }

    /// @inheritdoc IAccessManaged
    function isConsumingScheduledOp() public view returns (bytes4) {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
    }

    /**
     * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
     * permissions set by the current authority.
     */
    function _setAuthority(address newAuthority) internal virtual {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        $._authority = newAuthority;
        emit AuthorityUpdated(newAuthority);
    }

    /**
     * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
     * is less than 4 bytes long.
     */
    function _checkCanCall(address caller, bytes calldata data) internal virtual {
        AccessManagedStorage storage $ = _getAccessManagedStorage();
        (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
            authority(),
            caller,
            address(this),
            bytes4(data[0:4])
        );
        if (!immediate) {
            if (delay > 0) {
                $._consumingSchedule = true;
                IAccessManager(authority()).consumeScheduledOp(caller, data);
                $._consumingSchedule = false;
            } else {
                revert AccessManagedUnauthorized(caller);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 5 of 24 : AuthorityUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol)

pragma solidity ^0.8.20;

import {IAuthority} from "./IAuthority.sol";

library AuthorityUtils {
    /**
     * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
     * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
     * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
     */
    function canCallWithDelay(
        address authority,
        address caller,
        address target,
        bytes4 selector
    ) internal view returns (bool immediate, uint32 delay) {
        (bool success, bytes memory data) = authority.staticcall(
            abi.encodeCall(IAuthority.canCall, (caller, target, selector))
        );
        if (success) {
            if (data.length >= 0x40) {
                (immediate, delay) = abi.decode(data, (bool, uint32));
            } else if (data.length >= 0x20) {
                immediate = abi.decode(data, (bool));
            }
        }
        return (immediate, delay);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)

pragma solidity ^0.8.20;

interface IAccessManaged {
    /**
     * @dev Authority that manages this contract was updated.
     */
    event AuthorityUpdated(address authority);

    error AccessManagedUnauthorized(address caller);
    error AccessManagedRequiredDelay(address caller, uint32 delay);
    error AccessManagedInvalidAuthority(address authority);

    /**
     * @dev Returns the current authority.
     */
    function authority() external view returns (address);

    /**
     * @dev Transfers control to a new authority. The caller must be the current authority.
     */
    function setAuthority(address) external;

    /**
     * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
     * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
     * attacker controlled calls.
     */
    function isConsumingScheduledOp() external view returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol)

pragma solidity ^0.8.20;

import {IAccessManaged} from "./IAccessManaged.sol";
import {Time} from "../../utils/types/Time.sol";

interface IAccessManager {
    /**
     * @dev A delayed operation was scheduled.
     */
    event OperationScheduled(
        bytes32 indexed operationId,
        uint32 indexed nonce,
        uint48 schedule,
        address caller,
        address target,
        bytes data
    );

    /**
     * @dev A scheduled operation was executed.
     */
    event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);

    /**
     * @dev A scheduled operation was canceled.
     */
    event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);

    /**
     * @dev Informational labelling for a roleId.
     */
    event RoleLabel(uint64 indexed roleId, string label);

    /**
     * @dev Emitted when `account` is granted `roleId`.
     *
     * NOTE: The meaning of the `since` argument depends on the `newMember` argument.
     * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
     * otherwise it indicates the execution delay for this account and roleId is updated.
     */
    event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);

    /**
     * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
     */
    event RoleRevoked(uint64 indexed roleId, address indexed account);

    /**
     * @dev Role acting as admin over a given `roleId` is updated.
     */
    event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);

    /**
     * @dev Role acting as guardian over a given `roleId` is updated.
     */
    event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);

    /**
     * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
     */
    event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);

    /**
     * @dev Target mode is updated (true = closed, false = open).
     */
    event TargetClosed(address indexed target, bool closed);

    /**
     * @dev Role required to invoke `selector` on `target` is updated to `roleId`.
     */
    event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);

    /**
     * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
     */
    event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);

    error AccessManagerAlreadyScheduled(bytes32 operationId);
    error AccessManagerNotScheduled(bytes32 operationId);
    error AccessManagerNotReady(bytes32 operationId);
    error AccessManagerExpired(bytes32 operationId);
    error AccessManagerLockedAccount(address account);
    error AccessManagerLockedRole(uint64 roleId);
    error AccessManagerBadConfirmation();
    error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
    error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
    error AccessManagerUnauthorizedConsume(address target);
    error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
    error AccessManagerInvalidInitialAdmin(address initialAdmin);

    /**
     * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
     * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
     * & {execute} workflow.
     *
     * This function is usually called by the targeted contract to control immediate execution of restricted functions.
     * Therefore we only return true if the call can be performed without any delay. If the call is subject to a
     * previously set delay (not zero), then the function should return false and the caller should schedule the operation
     * for future execution.
     *
     * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
     * the operation can be executed if and only if delay is greater than 0.
     *
     * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
     * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
     * to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
     *
     * NOTE: This function does not report the permissions of this manager itself. These are defined by the
     * {_canCallSelf} function instead.
     */
    function canCall(
        address caller,
        address target,
        bytes4 selector
    ) external view returns (bool allowed, uint32 delay);

    /**
     * @dev Expiration delay for scheduled proposals. Defaults to 1 week.
     *
     * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
     * disabling any scheduling usage.
     */
    function expiration() external view returns (uint32);

    /**
     * @dev Minimum setback for all delay updates, with the exception of execution delays. It
     * can be increased without setback (and reset via {revokeRole} in the case event of an
     * accidental increase). Defaults to 5 days.
     */
    function minSetback() external view returns (uint32);

    /**
     * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
     */
    function isTargetClosed(address target) external view returns (bool);

    /**
     * @dev Get the role required to call a function.
     */
    function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);

    /**
     * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
     */
    function getTargetAdminDelay(address target) external view returns (uint32);

    /**
     * @dev Get the id of the role that acts as an admin for the given role.
     *
     * The admin permission is required to grant the role, revoke the role and update the execution delay to execute
     * an operation that is restricted to this role.
     */
    function getRoleAdmin(uint64 roleId) external view returns (uint64);

    /**
     * @dev Get the role that acts as a guardian for a given role.
     *
     * The guardian permission allows canceling operations that have been scheduled under the role.
     */
    function getRoleGuardian(uint64 roleId) external view returns (uint64);

    /**
     * @dev Get the role current grant delay.
     *
     * Its value may change at any point without an event emitted following a call to {setGrantDelay}.
     * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
     */
    function getRoleGrantDelay(uint64 roleId) external view returns (uint32);

    /**
     * @dev Get the access details for a given account for a given role. These details include the timepoint at which
     * membership becomes active, and the delay applied to all operation by this user that requires this permission
     * level.
     *
     * Returns:
     * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
     * [1] Current execution delay for the account.
     * [2] Pending execution delay for the account.
     * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
     */
    function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48);

    /**
     * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
     * permission might be associated with an execution delay. {getAccess} can provide more details.
     */
    function hasRole(uint64 roleId, address account) external view returns (bool, uint32);

    /**
     * @dev Give a label to a role, for improved role discoverability by UIs.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleLabel} event.
     */
    function labelRole(uint64 roleId, string calldata label) external;

    /**
     * @dev Add `account` to `roleId`, or change its execution delay.
     *
     * This gives the account the authorization to call any function that is restricted to this role. An optional
     * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
     * that is restricted to members of this role. The user will only be able to execute the operation after the delay has
     * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
     *
     * If the account has already been granted this role, the execution delay will be updated. This update is not
     * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
     * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
     * operation executed in the 3 hours that follows this update was indeed scheduled before this update.
     *
     * Requirements:
     *
     * - the caller must be an admin for the role (see {getRoleAdmin})
     * - granted role must not be the `PUBLIC_ROLE`
     *
     * Emits a {RoleGranted} event.
     */
    function grantRole(uint64 roleId, address account, uint32 executionDelay) external;

    /**
     * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
     * no effect.
     *
     * Requirements:
     *
     * - the caller must be an admin for the role (see {getRoleAdmin})
     * - revoked role must not be the `PUBLIC_ROLE`
     *
     * Emits a {RoleRevoked} event if the account had the role.
     */
    function revokeRole(uint64 roleId, address account) external;

    /**
     * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
     * the role this call has no effect.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * Emits a {RoleRevoked} event if the account had the role.
     */
    function renounceRole(uint64 roleId, address callerConfirmation) external;

    /**
     * @dev Change admin role for a given role.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleAdminChanged} event
     */
    function setRoleAdmin(uint64 roleId, uint64 admin) external;

    /**
     * @dev Change guardian role for a given role.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleGuardianChanged} event
     */
    function setRoleGuardian(uint64 roleId, uint64 guardian) external;

    /**
     * @dev Update the delay for granting a `roleId`.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {RoleGrantDelayChanged} event.
     */
    function setGrantDelay(uint64 roleId, uint32 newDelay) external;

    /**
     * @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetFunctionRoleUpdated} event per selector.
     */
    function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;

    /**
     * @dev Set the delay for changing the configuration of a given target contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetAdminDelayUpdated} event.
     */
    function setTargetAdminDelay(address target, uint32 newDelay) external;

    /**
     * @dev Set the closed flag for a contract.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     *
     * Emits a {TargetClosed} event.
     */
    function setTargetClosed(address target, bool closed) external;

    /**
     * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
     * operation is not yet scheduled, has expired, was executed, or was canceled.
     */
    function getSchedule(bytes32 id) external view returns (uint48);

    /**
     * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
     * been scheduled.
     */
    function getNonce(bytes32 id) external view returns (uint32);

    /**
     * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
     * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
     * required for the caller. The special value zero will automatically set the earliest possible time.
     *
     * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
     * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
     * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
     *
     * Emits a {OperationScheduled} event.
     *
     * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
     * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
     * contract if it is using standard Solidity ABI encoding.
     */
    function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32);

    /**
     * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
     * execution delay is 0.
     *
     * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
     * operation wasn't previously scheduled (if the caller doesn't have an execution delay).
     *
     * Emits an {OperationExecuted} event only if the call was scheduled and delayed.
     */
    function execute(address target, bytes calldata data) external payable returns (uint32);

    /**
     * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
     * operation that is cancelled.
     *
     * Requirements:
     *
     * - the caller must be the proposer, a guardian of the targeted function, or a global admin
     *
     * Emits a {OperationCanceled} event.
     */
    function cancel(address caller, address target, bytes calldata data) external returns (uint32);

    /**
     * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
     * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
     *
     * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
     * with all the verifications that it implies.
     *
     * Emit a {OperationExecuted} event.
     */
    function consumeScheduledOp(address caller, bytes calldata data) external;

    /**
     * @dev Hashing function for delayed operations.
     */
    function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);

    /**
     * @dev Changes the authority of a target managed by this manager instance.
     *
     * Requirements:
     *
     * - the caller must be a global admin
     */
    function updateAuthority(address target, address newAuthority) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard interface for permissioning originally defined in Dappsys.
 */
interface IAuthority {
    /**
     * @dev Returns true if the caller can invoke on a target the function identified by a function selector.
     */
    function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
}

File 9 of 24 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 10 of 24 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

File 11 of 24 : IERC3156FlashBorrower.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashBorrower.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC3156 FlashBorrower, as defined in
 * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
 */
interface IERC3156FlashBorrower {
    /**
     * @dev Receive a flash loan.
     * @param initiator The initiator of the loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param fee The additional amount of tokens to repay.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     * @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
     */
    function onFlashLoan(
        address initiator,
        address token,
        uint256 amount,
        uint256 fee,
        bytes calldata data
    ) external returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashLender.sol)

pragma solidity ^0.8.20;

import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";

/**
 * @dev Interface of the ERC3156 FlashLender, as defined in
 * https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
 */
interface IERC3156FlashLender {
    /**
     * @dev The amount of currency available to be lended.
     * @param token The loan currency.
     * @return The amount of `token` that can be borrowed.
     */
    function maxFlashLoan(address token) external view returns (uint256);

    /**
     * @dev The fee to be charged for a given loan.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @return The amount of `token` to be charged for the loan, on top of the returned principal.
     */
    function flashFee(address token, uint256 amount) external view returns (uint256);

    /**
     * @dev Initiate a flash loan.
     * @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
     * @param token The loan currency.
     * @param amount The amount of tokens lent.
     * @param data Arbitrary data structure, intended to contain user-defined parameters.
     */
    function flashLoan(
        IERC3156FlashBorrower receiver,
        address token,
        uint256 amount,
        bytes calldata data
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // ? `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // ? `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 17 of 24 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";

/**
 * @dev This library provides helpers for manipulating time-related objects.
 *
 * It uses the following types:
 * - `uint48` for timepoints
 * - `uint32` for durations
 *
 * While the library doesn't provide specific types for timepoints and duration, it does provide:
 * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
 * - additional helper functions
 */
library Time {
    using Time for *;

    /**
     * @dev Get the block timestamp as a Timepoint.
     */
    function timestamp() internal view returns (uint48) {
        return SafeCast.toUint48(block.timestamp);
    }

    /**
     * @dev Get the block number as a Timepoint.
     */
    function blockNumber() internal view returns (uint48) {
        return SafeCast.toUint48(block.number);
    }

    // ==================================================== Delay =====================================================
    /**
     * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
     * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
     * This allows updating the delay applied to some operation while keeping some guarantees.
     *
     * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
     * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
     * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
     * still apply for some time.
     *
     *
     * The `Delay` type is 112 bits long, and packs the following:
     *
     * ```
     *   | [uint48]: effect date (timepoint)
     *   |           | [uint32]: value before (duration)
     *   ?           ?       ? [uint32]: value after (duration)
     * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
     * ```
     *
     * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
     * supported.
     */
    type Delay is uint112;

    /**
     * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
     */
    function toDelay(uint32 duration) internal pure returns (Delay) {
        return Delay.wrap(duration);
    }

    /**
     * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
     * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
     */
    function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
        (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
        return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
    }

    /**
     * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
     * effect timepoint is 0, then the pending value should not be considered.
     */
    function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
        return _getFullAt(self, timestamp());
    }

    /**
     * @dev Get the current value.
     */
    function get(Delay self) internal view returns (uint32) {
        (uint32 delay, , ) = self.getFull();
        return delay;
    }

    /**
     * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
     * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
     * new delay becomes effective.
     */
    function withUpdate(
        Delay self,
        uint32 newValue,
        uint32 minSetback
    ) internal view returns (Delay updatedDelay, uint48 effect) {
        uint32 value = self.get();
        uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
        effect = timestamp() + setback;
        return (pack(value, newValue, effect), effect);
    }

    /**
     * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
     */
    function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        uint112 raw = Delay.unwrap(self);

        valueAfter = uint32(raw);
        valueBefore = uint32(raw >> 32);
        effect = uint48(raw >> 64);

        return (valueBefore, valueAfter, effect);
    }

    /**
     * @dev pack the components into a Delay object.
     */
    function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
        return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
    }
}

File 19 of 24 : IPrincipalToken.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.20;

import "openzeppelin-contracts/interfaces/IERC20.sol";
import "openzeppelin-contracts/interfaces/IERC20Metadata.sol";
import "openzeppelin-contracts/interfaces/IERC3156FlashLender.sol";

interface IPrincipalToken is IERC20, IERC20Metadata, IERC3156FlashLender {
    /* ERRORS
     *****************************************************************************************************************/

    error InvalidDecimals();
    error BeaconNotSet();
    error PTExpired();
    error PTNotExpired();
    error RateError();
    error AddressError();
    error UnauthorizedCaller();
    error RatesAtExpiryAlreadyStored();
    error ERC5143SlippageProtectionFailed();
    error InsufficientBalance();
    error FlashLoanExceedsMaxAmount();
    error FlashLoanCallbackFailed();
    error NoRewardsProxy();
    error ClaimRewardsFailed();

    /* Functions
     *****************************************************************************************************************/

    function initialize(address _ibt, uint256 _duration, address initialAuthority) external;

    /**
     * @notice Toggle Pause
     * @dev Should only be called in extraordinary situations by the admin of the contract
     */
    function pause() external;

    /**
     * @notice Toggle UnPause
     * @dev Should only be called in extraordinary situations by the admin of the contract
     */
    function unPause() external;

    /**
     * @notice Deposits amount of assets in the PT vault
     * @param assets The amount of assets being deposited
     * @param receiver The receiver address of the shares
     * @return shares The amount of shares minted (same amount for PT & yt)
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @notice Deposits amount of assets in the PT vault
     * @param assets The amount of assets being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver the receiver address of the YTs
     * @return shares The amount of shares minted (same amount for PT & yt)
     */
    function deposit(
        uint256 assets,
        address ptReceiver,
        address ytReceiver
    ) external returns (uint256 shares);

    /**
     * @notice Deposits amount of assets with a lower bound on shares received
     * @param assets The amount of assets being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver The receiver address of the YTs
     * @param minShares The minimum allowed shares from this deposit
     * @return shares The amount of shares actually minted to the receiver
     */
    function deposit(
        uint256 assets,
        address ptReceiver,
        address ytReceiver,
        uint256 minShares
    ) external returns (uint256 shares);

    /**
     * @notice Same as normal deposit but with IBTs
     * @param ibts The amount of IBT being deposited
     * @param receiver The receiver address of the shares
     * @return shares The amount of shares minted to the receiver
     */
    function depositIBT(uint256 ibts, address receiver) external returns (uint256 shares);

    /**
     * @notice Same as normal deposit but with IBTs
     * @param ibts The amount of IBT being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver the receiver address of the YTs
     * @return shares The amount of shares minted to the receiver
     */
    function depositIBT(
        uint256 ibts,
        address ptReceiver,
        address ytReceiver
    ) external returns (uint256 shares);

    /**
     * @notice Same as normal deposit but with IBTs
     * @param ibts The amount of IBT being deposited
     * @param ptReceiver The receiver address of the PTs
     * @param ytReceiver The receiver address of the YTs
     * @param minShares The minimum allowed shares from this deposit
     * @return shares The amount of shares minted to the receiver
     */
    function depositIBT(
        uint256 ibts,
        address ptReceiver,
        address ytReceiver,
        uint256 minShares
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends assets to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares
     * @return assets The actual amount of assets received for burning the shares
     */
    function redeem(
        uint256 shares,
        address receiver,
        address owner
    ) external returns (uint256 assets);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends assets to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares
     * @param minAssets The minimum assets that should be returned to user
     * @return assets The actual amount of assets received for burning the shares
     */
    function redeem(
        uint256 shares,
        address receiver,
        address owner,
        uint256 minAssets
    ) external returns (uint256 assets);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends IBTs to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares
     * @return ibts The actual amount of IBT received for burning the shares
     */
    function redeemForIBT(
        uint256 shares,
        address receiver,
        address owner
    ) external returns (uint256 ibts);

    /**
     * @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
     * and sends IBTs to receiver
     * @param shares The amount of shares to burn
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares
     * @param minIbts The minimum IBTs that should be returned to user
     * @return ibts The actual amount of IBT received for burning the shares
     */
    function redeemForIBT(
        uint256 shares,
        address receiver,
        address owner,
        uint256 minIbts
    ) external returns (uint256 ibts);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
     * @param assets The amount of assets to be received
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares (PTs and YTs)
     * @return shares The actual amount of shares burnt for receiving the assets
     */
    function withdraw(
        uint256 assets,
        address receiver,
        address owner
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
     * @param assets The amount of assets to be received
     * @param receiver The address that will receive the assets
     * @param owner The owner of the shares (PTs and YTs)
     * @param maxShares The maximum shares allowed to be burnt
     * @return shares The actual amount of shares burnt for receiving the assets
     */
    function withdraw(
        uint256 assets,
        address receiver,
        address owner,
        uint256 maxShares
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
     * @param ibts The amount of IBT to be received
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares (PTs and YTs)
     * @return shares The actual amount of shares burnt for receiving the IBTs
     */
    function withdrawIBT(
        uint256 ibts,
        address receiver,
        address owner
    ) external returns (uint256 shares);

    /**
     * @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
     * @param ibts The amount of IBT to be received
     * @param receiver The address that will receive the IBTs
     * @param owner The owner of the shares (PTs and YTs)
     * @param maxShares The maximum shares allowed to be burnt
     * @return shares The actual amount of shares burnt for receiving the IBTs
     */
    function withdrawIBT(
        uint256 ibts,
        address receiver,
        address owner,
        uint256 maxShares
    ) external returns (uint256 shares);

    /**
     * @notice Updates _user's yield since last update
     * @param _user The user whose yield will be updated
     * @return updatedUserYieldInIBT The unclaimed yield of the user in IBT (not just the updated yield)
     */
    function updateYield(address _user) external returns (uint256 updatedUserYieldInIBT);

    /**
     * @notice Claims caller's unclaimed yield in asset
     * @param _receiver The receiver of yield
     * @param _minAssets The minimum amount of assets that should be received
     * @return yieldInAsset The amount of yield claimed in asset
     */
    function claimYield(
        address _receiver,
        uint256 _minAssets
    ) external returns (uint256 yieldInAsset);

    /**
     * @notice Claims caller's unclaimed yield in IBT
     * @param _receiver The receiver of yield
     * @param _minIBT The minimum amount of IBT that should be received
     * @return yieldInIBT The amount of yield claimed in IBT
     */
    function claimYieldInIBT(
        address _receiver,
        uint256 _minIBT
    ) external returns (uint256 yieldInIBT);

    /**
     * @notice Claims the collected ibt fees and redeems them to the fee collector
     * @param _minAssets The minimum amount of assets that should be received
     * @return assets The amount of assets sent to the fee collector
     */
    function claimFees(uint256 _minAssets) external returns (uint256 assets);

    /**
     * @notice Updates yield of both sender and receiver of YTs
     * @param _from the sender of YTs
     * @param _to the receiver of YTs
     */
    function beforeYtTransfer(address _from, address _to) external;

    /**
     * Call the claimRewards function of the rewards contract
     * @param data The optional data to be passed to the rewards contract
     */
    function claimRewards(bytes memory data) external;

    /* SETTERS
     *****************************************************************************************************************/

    /**
     * @notice Stores PT and IBT rates at expiry. Ideally, it should be called the day of expiry
     */
    function storeRatesAtExpiry() external;

    /** Set a new Rewards Proxy
     * @param _rewardsProxy The address of the new reward proxy
     */
    function setRewardsProxy(address _rewardsProxy) external;

    /* GETTERS
     *****************************************************************************************************************/

    /**
     * @notice Returns the amount of shares minted for the theorical deposited amount of assets
     * @param assets The amount of assets deposited
     * @return The amount of shares minted
     */
    function previewDeposit(uint256 assets) external view returns (uint256);

    /**
     * @notice Returns the amount of shares minted for the theorical deposited amount of IBT
     * @param ibts The amount of IBT deposited
     * @return The amount of shares minted
     */
    function previewDepositIBT(uint256 ibts) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     * @param receiver The receiver of the shares
     * @return The maximum amount of assets that can be deposited
     */
    function maxDeposit(address receiver) external view returns (uint256);

    /**
     * @notice Returns the theorical amount of shares that need to be burnt to receive assets of underlying
     * @param assets The amount of assets to receive
     * @return The amount of shares burnt
     */
    function previewWithdraw(uint256 assets) external view returns (uint256);

    /**
     * @notice Returns the theorical amount of shares that need to be burnt to receive amount of IBT
     * @param ibts The amount of IBT to receive
     * @return The amount of shares burnt
     */
    function previewWithdrawIBT(uint256 ibts) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     * @param owner The owner of the Vault shares
     * @return The maximum amount of assets that can be withdrawn
     */
    function maxWithdraw(address owner) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of the IBT that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     * @param owner The owner of the Vault shares
     * @return The maximum amount of IBT that can be withdrawn
     */
    function maxWithdrawIBT(address owner) external view returns (uint256);

    /**
     * @notice Returns the amount of assets received for the theorical amount of burnt shares
     * @param shares The amount of shares to burn
     * @return The amount of assets received
     */
    function previewRedeem(uint256 shares) external view returns (uint256);

    /**
     * @notice Returns the amount of IBT received for the theorical amount of burnt shares
     * @param shares The amount of shares to burn
     * @return The amount of IBT received
     */
    function previewRedeemForIBT(uint256 shares) external view returns (uint256);

    /**
     * @notice Returns the maximum amount of Vault shares that can be redeemed by the owner
     * @notice This function behaves differently before and after expiry. Before expiry an equal amount of PT and YT
     * needs to be burnt, while after expiry only PTs are burnt.
     * @param owner The owner of the shares
     * @return The maximum amount of shares that can be redeemed
     */
    function maxRedeem(address owner) external view returns (uint256);

    /**
     * Returns the total amount of the underlying asset that is owned by the Vault in the form of IBT.
     */
    function totalAssets() external view returns (uint256);

    /**
     * @notice Converts an underlying amount in principal. Equivalent to ERC-4626's convertToShares method.
     * @param underlyingAmount The amount of underlying (or assets) to convert
     * @return The resulting amount of principal (or shares)
     */
    function convertToPrincipal(uint256 underlyingAmount) external view returns (uint256);

    /**
     * @notice Converts a principal amount in underlying. Equivalent to ERC-4626's convertToAssets method.
     * @param principalAmount The amount of principal (or shares) to convert
     * @return The resulting amount of underlying (or assets)
     */
    function convertToUnderlying(uint256 principalAmount) external view returns (uint256);

    /**
     * @notice Returns whether or not the contract is paused.
     * @return true if the contract is paused, and false otherwise
     */
    function paused() external view returns (bool);

    /**
     * @notice Returns the unix timestamp (uint256) at which the PT contract expires
     * @return The unix timestamp (uint256) when PTs become redeemable
     */
    function maturity() external view returns (uint256);

    /**
     * @notice Returns the duration of the PT contract
     * @return The duration (in s) to expiry/maturity of the PT contract
     */
    function getDuration() external view returns (uint256);

    /**
     * @notice Returns the address of the underlying token (or asset). Equivalent to ERC-4626's asset method.
     * @return The address of the underlying token (or asset)
     */
    function underlying() external view returns (address);

    /**
     * @notice Returns the IBT address of the PT contract
     * @return ibt The address of the IBT
     */
    function getIBT() external view returns (address ibt);

    /**
     * @notice Returns the yt address of the PT contract
     * @return yt The address of the yt
     */
    function getYT() external view returns (address yt);

    /**
     * @notice Returns the current ibtRate
     * @return The current ibtRate
     */
    function getIBTRate() external view returns (uint256);

    /**
     * @notice Returns the current ptRate
     * @return The current ptRate
     */
    function getPTRate() external view returns (uint256);

    /**
     * @notice Returns 1 unit of IBT
     * @return The IBT unit
     */
    function getIBTUnit() external view returns (uint256);

    /**
     * @notice Get the unclaimed fees in IBT
     * @return The unclaimed fees in IBT
     */
    function getUnclaimedFeesInIBT() external view returns (uint256);

    /**
     * @notice Get the total collected fees in IBT (claimed and unclaimed)
     * @return The total fees in IBT
     */
    function getTotalFeesInIBT() external view returns (uint256);

    /**
     * @notice Get the tokenization fee of the PT
     * @return The tokenization fee
     */
    function getTokenizationFee() external view returns (uint256);

    /**
     * @notice Get the current IBT yield of the user
     * @param _user The address of the user to get the current yield from
     * @return The yield of the user in IBT
     */
    function getCurrentYieldOfUserInIBT(address _user) external view returns (uint256);
}

// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.20;

interface IRateAdjustmentOracle {
    /* ERRORS
     *****************************************************************************************************************/

    error AddressError();
    error AddressesNotSet();
    error PostInitCalledBeforeInit();

    /* Functions
     *****************************************************************************************************************/

    /**
     * @notice First function called after contract depoyment, sets the contract authority
     * @param _initialAuthority Initial authority of the rate oracle
     */
    function initialize(address _initialAuthority) external;

    /**
     * @dev Function called after deployment of the associated Curve Pool to initialize the remaining state.
     * @dev Deployment of the Curve Pool requires the address of the rate adjustment oracle, while the rate adjustment
     * @dev oracle needs the address of the Curve Pool to make function calls. Therefore, initialization is done in two steps.
     * @param _startTimestamp The PT deployment time
     * @param _expiry The PT expiry
     * @param _initialPrice The initial PT/IBT exchange rate
     * @param _curvePoolAddress Address of the curve pool
     */
    function post_initialize(
        uint256 _startTimestamp,
        uint256 _expiry,
        uint256 _initialPrice,
        address _curvePoolAddress
    ) external;

    /**
     * @notice Function reporting the oracle value used in curve stableswap pool
     * @return Multiplicative adjustment factor for last_prices in between each two trades
     */
    function value() external view returns (uint256);

    /**
     * @notice Function to change the current initial price
     * @param _newInitialPrice new initial price we want to set
     */
    function setInitialPrice(uint256 _newInitialPrice) external;

    /**
     * @notice Getter for the current initial price
     * @return current initial price
     */
    function getInitialPrice() external view returns (uint256);

    /**
     * @notice Getter for the curve pool address of the rate adjustment oracle
     * @return curve pool address
     */
    function getCurvePoolAddress() external view returns (address);

    /**
     * Getter for the start time of the pt
     * @return start time of the pt
     */
    function getStartTime() external view returns (uint256);

    /**
     * @notice Getter for the expiry of the pt
     * @return expiry of the pt
     */
    function getExpiry() external view returns (uint256);
}

File 21 of 24 : IStableSwapNG.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.4;

interface IStableSwapNG {
    function A() external view returns (uint256);
    function A_precise() external view returns (uint256);
    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function D_ma_time() external view returns (uint256);
    function D_oracle() external view returns (uint256);
    function N_COINS() external view returns (uint256);
    function add_liquidity(
        uint256[] memory _amounts,
        uint256 _min_mint_amount,
        address _receiver
    ) external returns (uint256);
    function admin_balances(uint256 arg0) external view returns (uint256);
    function admin_fee() external view returns (uint256);
    function allowance(address arg0, address arg1) external view returns (uint256);
    function approve(address _spender, uint256 _value) external returns (bool);
    function balanceOf(address arg0) external view returns (uint256);
    function balances(uint256 i) external view returns (uint256);
    function calc_token_amount(
        uint256[] memory _amounts,
        bool _is_deposit
    ) external view returns (uint256);
    function calc_withdraw_one_coin(uint256 _burn_amount, int128 i) external view returns (uint256);
    function coins(uint256 arg0) external view returns (address);
    function decimals() external view returns (uint8);
    function dynamic_fee(int128 i, int128 j) external view returns (uint256);
    function ema_price(uint256 i) external view returns (uint256);
    function exchange(int128 i, int128 j, uint256 _dx, uint256 _min_dy) external returns (uint256);
    function exchange(
        int128 i,
        int128 j,
        uint256 _dx,
        uint256 _min_dy,
        address _receiver
    ) external returns (uint256);
    function exchange_received(
        int128 i,
        int128 j,
        uint256 _dx,
        uint256 _min_dy
    ) external returns (uint256);
    function exchange_received(
        int128 i,
        int128 j,
        uint256 _dx,
        uint256 _min_dy,
        address _receiver
    ) external returns (uint256);
    function fee() external view returns (uint256);
    function future_A() external view returns (uint256);
    function future_A_time() external view returns (uint256);
    function get_balances() external view returns (uint256[] memory);
    function get_dx(int128 i, int128 j, uint256 dy) external view returns (uint256);
    function get_dy(int128 i, int128 j, uint256 dx) external view returns (uint256);
    function get_p(uint256 i) external view returns (uint256);
    function get_virtual_price() external view returns (uint256);
    function initial_A() external view returns (uint256);
    function initial_A_time() external view returns (uint256);
    function last_price(uint256 i) external view returns (uint256);
    function ma_exp_time() external view returns (uint256);
    function ma_last_time() external view returns (uint256);
    function name() external view returns (string memory);
    function nonces(address arg0) external view returns (uint256);
    function offpeg_fee_multiplier() external view returns (uint256);
    function permit(
        address _owner,
        address _spender,
        uint256 _value,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external returns (bool);
    function price_oracle(uint256 i) external view returns (uint256);
    function ramp_A(uint256 _future_A, uint256 _future_time) external;
    function remove_liquidity(
        uint256 _burn_amount,
        uint256[] memory _min_amounts
    ) external returns (uint256[] memory);
    function remove_liquidity(
        uint256 _burn_amount,
        uint256[] memory _min_amounts,
        address _receiver
    ) external returns (uint256[] memory);
    function remove_liquidity(
        uint256 _burn_amount,
        uint256[] memory _min_amounts,
        address _receiver,
        bool _claim_admin_fees
    ) external returns (uint256[] memory);
    function remove_liquidity_imbalance(
        uint256[] memory _amounts,
        uint256 _max_burn_amount
    ) external returns (uint256);
    function remove_liquidity_imbalance(
        uint256[] memory _amounts,
        uint256 _max_burn_amount,
        address _receiver
    ) external returns (uint256);
    function remove_liquidity_one_coin(
        uint256 _burn_amount,
        int128 i,
        uint256 _min_received
    ) external returns (uint256);
    function remove_liquidity_one_coin(
        uint256 _burn_amount,
        int128 i,
        uint256 _min_received,
        address _receiver
    ) external returns (uint256);
    function salt() external view returns (bytes32);
    function set_ma_exp_time(uint256 _ma_exp_time, uint256 _D_ma_time) external;
    function set_new_fee(uint256 _new_fee, uint256 _new_offpeg_fee_multiplier) external;
    function stop_ramp_A() external;
    function stored_rates() external view returns (uint256[] memory);
    function symbol() external view returns (string memory);
    function totalSupply() external view returns (uint256);
    function transfer(address _to, uint256 _value) external returns (bool);
    function transferFrom(address _from, address _to, uint256 _value) external returns (bool);
    function version() external view returns (string memory);
    function withdraw_admin_fees() external;
}

// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.8.0;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) *
                    y_int256 +
                    ((ln_36_x % ONE_18) * y_int256) /
                    ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

File 23 of 24 : RateAdjustmentMath.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.20;

import "../interfaces/IRateAdjustmentOracle.sol";
import "openzeppelin-math/Math.sol";
import "./LogExpMath.sol";

library RateAdjustmentMath {
    using Math for uint256;

    uint256 public constant UNIT = 10 ** 18;

    /**
     * @notice Computes the rate of the Principal Token in underlying, given the initial discount in underlying.
     * @notice This rate is used internally in the Curve Pool for price adjustment. The oracle quotes the Principal Token
     * @notice price in unerlying according to P(t,T)=exp(-r(T-t)), where one assumes that the life of the instrument starts
     * @notice at 0, the current timestamp is t, and the expiry is T >= t. Here r represents the instantaneous forward rate.
     * @notice This formula is equivalent to what is given below.
     * @param initialTimestamp Timestamp of deployment of the Principal Token
     * @param currentTimestamp Current timestamp
     * @param expiryTimestamp Expiry Timestamp of the Principal Token
     * @param initialPrice Value of the Principal Token in underlying at the beginning of the term. Uniquely specifies
     * the discount and the initial implied rate.
     * @param futurePTValue Face value of a unit of Principal Token. Can be less than one unit of unerlying if the associated
     * ibt suffered from negative interest rates.
     * @return rate The rate of the PT in underlying at time current_timestamp
     */
    function getAdjustmentFactor(
        uint256 initialTimestamp,
        uint256 currentTimestamp,
        uint256 expiryTimestamp,
        uint256 initialPrice,
        uint256 futurePTValue
    ) internal pure returns (uint256 rate) {
        // The value of an expired bond does not change in further time.
        // The bond is redeemable for its face value.
        if (currentTimestamp > expiryTimestamp) {
            return futurePTValue;
        }

        // P(t,T) = ptRate * init_price ^ ((T-t)/(T-t0))
        uint256 exp = (expiryTimestamp - currentTimestamp).mulDiv(
            UNIT,
            expiryTimestamp - initialTimestamp
        );

        rate = futurePTValue.mulDiv(LogExpMath.pow(initialPrice, exp), UNIT);
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.20;

/**
 * @title RayMath library
 * @author Spectra Finance
 * @notice Provides conversions for/to any decimal tokens to/from ray.
 * @dev Conversions from Ray are rounded down.
 */
library RayMath {
    /// @dev 27 decimal unit
    uint256 public constant RAY_UNIT = 1e27;
    uint256 public constant RAY_DECIMALS = 27;

    /**
     * @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals.
     * @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals.
     * @param _decimals The target decimal precision for the converted amount.
     * @return b The amount converted from Ray to the specified decimal precision.
     */
    function fromRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) {
        uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
        assembly {
            b := div(_a, decimals_ratio)
        }
    }

    /**
     * @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals.
     * @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals.
     * @param _decimals The target decimal precision for the converted amount.
     * @param _roundUp If true, the function rounds up the result to the nearest integer value.
     *                If false, it truncates (rounds down) to the nearest integer.
     * @return b The amount converted from Ray to the specified decimal precision, rounded as specified.
     */
    function fromRay(
        uint256 _a,
        uint256 _decimals,
        bool _roundUp
    ) internal pure returns (uint256 b) {
        uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
        assembly {
            b := div(_a, decimals_ratio)

            if and(eq(_roundUp, 1), gt(mod(_a, decimals_ratio), 0)) {
                b := add(b, 1)
            }
        }
    }

    /**
     * @dev Converts a value with a specified number of decimals to Ray (27-decimal precision).
     * @param _a The amount to be converted, specified in a decimal format.
     * @param _decimals The number of decimals in the representation of 'a'.
     * @return b The amount in Ray, converted from the specified decimal precision.
     *           Ensures that the conversion maintains the value's integrity (no overflow).
     */
    function toRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) {
        uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
        // to avoid overflow, b/decimals_ratio == _a
        assembly {
            b := mul(_a, decimals_ratio)

            if iszero(eq(div(b, decimals_ratio), _a)) {
                revert(0, 0)
            }
        }
    }
}

Settings
{
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "appendCBOR": true,
    "bytecodeHash": "ipfs",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
    "openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/",
    "openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/",
    "openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/",
    "openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/",
    "openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/",
    "openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/",
    "config/=lib/spectra-contracts-configs/script/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "DiamondRouter/=lib/DiamondRouter/",
    "halmos-cheatcodes/=lib/DiamondRouter/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "solidity-stringutils/=lib/DiamondRouter/lib/solidity-stringutils/",
    "spectra-contracts-configs/=lib/spectra-contracts-configs/"
  ],
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"authority","type":"address"}],"name":"AccessManagedInvalidAuthority","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"uint32","name":"delay","type":"uint32"}],"name":"AccessManagedRequiredDelay","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"AccessManagedUnauthorized","type":"error"},{"inputs":[],"name":"AddressError","type":"error"},{"inputs":[],"name":"AddressesNotSet","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"PostInitCalledBeforeInit","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_previousInitialPrice","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"_newInitialPrice","type":"uint256"}],"name":"InitialPriceChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurvePoolAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getExpiry","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInitialPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_initialAuthority","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isConsumingScheduledOp","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_initialTimestamp","type":"uint256"},{"internalType":"uint256","name":"_expiry","type":"uint256"},{"internalType":"uint256","name":"_initialPrice","type":"uint256"},{"internalType":"address","name":"_curvePoolAddress","type":"address"}],"name":"post_initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newInitialPrice","type":"uint256"}],"name":"setInitialPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"value","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"}],"stateMutability":"view","type":"function"}]

608060405234801561000f575f80fd5b5061001861001d565b6100cf565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff161561006d5760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b03908116146100cc5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b611b10806100dc5f395ff3fe608060405234801561000f575f80fd5b50600436106100a6575f3560e01c80639f4ba0ee1161006e5780639f4ba0ee14610112578063bf7e214f14610125578063c4d66de814610145578063c828371e14610158578063d568499c14610160578063f61c266b14610170575f80fd5b806306f660ef146100aa5780633fa4f245146100c15780637a9e5e4b146100c95780638fb36037146100de57806395eeb400146100ff575b5f80fd5b6003545b6040519081526020015b60405180910390f35b6100ae610178565b6100dc6100d7366004611762565b610558565b005b6100e66105e3565b6040516001600160e01b031990911681526020016100b8565b6100dc61010d36600461177d565b610619565b6100dc6101203660046117bb565b610750565b61012d61078c565b6040516001600160a01b0390911681526020016100b8565b6100dc610153366004611762565b6107a7565b6001546100ae565b5f546001600160a01b031661012d565b6002546100ae565b5f80546001600160a01b03166101a157604051630537d15b60e41b815260040160405180910390fd5b5f805460405163c661065760e01b8152600160048201526001600160a01b039091169063c661065790602401602060405180830381865afa1580156101e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061020c91906117d2565b5f805460405163c661065760e01b81526004810183905292935090916001600160a01b039091169063c661065790602401602060405180830381865afa158015610258573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027c91906117d2565b90505f816001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102bb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102df91906117d2565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561031e573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061034291906117ed565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610381573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103a591906117ed565b90505f6103b383600a611901565b90505f6103c183600a611901565b90505f6103d260ff8516601261190f565b6103dd90600a611922565b604051631dc7f52160e01b8152600481018590526001600160a01b038a1690631dc7f52190602401602060405180830381865afa158015610420573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610444919061192d565b61044e9190611944565b60405163266d6a8360e11b8152600481018590529091505f906001600160a01b03891690634cdad50690602401602060405180830381865afa158015610496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104ba919061192d565b6040516303d1689d60e11b8152600481018690526001600160a01b038a16906307a2d13a90602401602060405180830381865afa1580156104fd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610521919061192d565b61052b9084611944565b610535919061196f565b905061054a60015442600254600354856108d8565b995050505050505050505090565b3361056161078c565b6001600160a01b0316816001600160a01b0316146105a15760405162d1953b60e31b81526001600160a01b03821660048201526024015b60405180910390fd5b816001600160a01b03163b5f036105d6576040516361798f2f60e11b81526001600160a01b0383166004820152602401610598565b6105df8261093c565b5050565b5f80516020611abb83398151915280545f9190600160a01b900460ff1661060a575f610613565b638fb3603760e01b5b91505090565b610625335b5f3661099c565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805460029190600160401b900460ff168061066f5750805467ffffffffffffffff808416911610155b1561068d5760405163f92ee8a960e01b815260040160405180910390fd5b805468ffffffffffffffffff191667ffffffffffffffff831617600160401b1781556001600160a01b0383166106d657604051630c59659760e31b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b038516179055600186905560028590556003849055805460ff60401b1916815560405167ffffffffffffffff831681527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906020015b60405180910390a1505050505050565b6107593361061e565b6003546040518291907f792ab2554bf1289b3eef409b266807d65198c165cf023652066229da587dd080905f90a3600355565b5f80516020611abb833981519152546001600160a01b031690565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156107ec5750825b90505f8267ffffffffffffffff1660011480156108085750303b155b905081158015610816575080155b156108345760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561085e57845460ff60401b1916600160401b1785555b6001600160a01b03861661088557604051630c59659760e31b815260040160405180910390fd5b61088e86610a92565b83156108d057845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602001610740565b505050505050565b5f838511156108e8575080610933565b5f610910670de0b6b3a76400006108ff898861190f565b610909898961190f565b9190610aa6565b905061092f61091f8583610b66565b8490670de0b6b3a7640000610aa6565b9150505b95945050505050565b5f80516020611abb83398151915280546001600160a01b0383166001600160a01b03199091168117825560408051918252517f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9181900360200190a15050565b5f80516020611abb8339815191525f806109d46109b761078c565b87306109c660045f8a8c61198e565b6109cf916119b5565b610d15565b91509150816108d05763ffffffff811615610a6f57825460ff60a01b1916600160a01b178355610a0261078c565b6001600160a01b03166394c7d7ee8787876040518463ffffffff1660e01b8152600401610a31939291906119e5565b5f604051808303815f87803b158015610a48575f80fd5b505af1158015610a5a573d5f803e3d5ffd5b5050845460ff60a01b19168555506108d09050565b60405162d1953b60e31b81526001600160a01b0387166004820152602401610598565b610a9a610e1d565b610aa381610e68565b50565b5f838302815f1985870982811083820303915050805f03610ada57838281610ad057610ad061195b565b0492505050610b5f565b808411610afa5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b5f815f03610b7d5750670de0b6b3a7640000610d0f565b825f03610b8b57505f610d0f565b600160ff1b8310610bd05760405162461bcd60e51b815260206004820152600f60248201526e78206f7574206f6620626f756e647360881b6044820152606401610598565b82770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328310610c2a5760405162461bcd60e51b815260206004820152600f60248201526e79206f7574206f6620626f756e647360881b6044820152606401610598565b825f670c7d713b49da000083138015610c4a5750670f43fc2c04ee000083125b15610c80575f610c5984610e79565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050610c8e565b81610c8a84610f96565b0290505b670de0b6b3a76400009005680238fd42c5cf03ffff198112801590610cbc575068070c1cc73b00c800008113155b610d005760405162461bcd60e51b815260206004820152601560248201527470726f64756374206f7574206f6620626f756e647360581b6044820152606401610598565b610d098161133b565b93505050505b92915050565b6040516001600160a01b03848116602483015283811660448301526001600160e01b0319831660648301525f9182918291829189169060840160408051601f198184030181529181526020820180516001600160e01b031663b700961360e01b17905251610d839190611a24565b5f60405180830381855afa9150503d805f8114610dbb576040519150601f19603f3d011682016040523d82523d5f602084013e610dc0565b606091505b50915091508115610e12576040815110610df25780806020019051810190610de89190611a64565b9094509250610e12565b6020815110610e125780806020019051810190610e0f9190611aa1565b93505b505094509492505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610e6657604051631afcd79f60e31b815260040160405180910390fd5b565b610e70610e1d565b610aa38161093c565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281610eb957610eb961195b565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a7640000821215610fd557610fcd826a0c097ce7bc90715b34b9f160241b81610fc757610fc761195b565b05610f96565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261102557770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261105d576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126110a5576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126110e0576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261111757693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261114e57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126111835768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126111ae57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126111e3576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312611218576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261124c576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611280576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816112a8576112a861195b565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b5f680238fd42c5cf03ffff19821215801561135f575068070c1cc73b00c800008213155b61139e5760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610598565b5f8212156113d4576113b1825f0361133b565b6a0c097ce7bc90715b34b9f160241b816113cd576113cd61195b565b0592915050565b5f6806f05b59d3b2000000831261141357506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000611449565b6803782dace9d9000000831261144557506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380611449565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126114995768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d63100000084126114d5576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261150f57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412611549576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261158257680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126115bb5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126115f4576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261162d5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6001600160a01b0381168114610aa3575f80fd5b5f60208284031215611772575f80fd5b8135610b5f8161174e565b5f805f8060808587031215611790575f80fd5b84359350602085013592506040850135915060608501356117b08161174e565b939692955090935050565b5f602082840312156117cb575f80fd5b5035919050565b5f602082840312156117e2575f80fd5b8151610b5f8161174e565b5f602082840312156117fd575f80fd5b815160ff81168114610b5f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b600181815b8085111561185b57815f19048211156118415761184161180d565b8085161561184e57918102915b93841c9390800290611826565b509250929050565b5f8261187157506001610d0f565b8161187d57505f610d0f565b8160018114611893576002811461189d576118b9565b6001915050610d0f565b60ff8411156118ae576118ae61180d565b50506001821b610d0f565b5060208310610133831016604e8410600b84101617156118dc575081810a610d0f565b6118e68383611821565b805f19048211156118f9576118f961180d565b029392505050565b5f610b5f60ff841683611863565b81810381811115610d0f57610d0f61180d565b5f610b5f8383611863565b5f6020828403121561193d575f80fd5b5051919050565b8082028115828204841417610d0f57610d0f61180d565b634e487b7160e01b5f52601260045260245ffd5b5f8261198957634e487b7160e01b5f52601260045260245ffd5b500490565b5f808585111561199c575f80fd5b838611156119a8575f80fd5b5050820193919092039150565b6001600160e01b031981358181169160048510156119dd5780818660040360031b1b83161692505b505092915050565b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f82515f5b81811015611a435760208186018101518583015201611a29565b505f920191825250919050565b80518015158114611a5f575f80fd5b919050565b5f8060408385031215611a75575f80fd5b611a7e83611a50565b9150602083015163ffffffff81168114611a96575f80fd5b809150509250929050565b5f60208284031215611ab1575f80fd5b610b5f82611a5056fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a264697066735822122049822f8cbe19ee2e8b43b57fe7369e25dc64fa149405b6e58e3c263f17def12e64736f6c63430008140033

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106100a6575f3560e01c80639f4ba0ee1161006e5780639f4ba0ee14610112578063bf7e214f14610125578063c4d66de814610145578063c828371e14610158578063d568499c14610160578063f61c266b14610170575f80fd5b806306f660ef146100aa5780633fa4f245146100c15780637a9e5e4b146100c95780638fb36037146100de57806395eeb400146100ff575b5f80fd5b6003545b6040519081526020015b60405180910390f35b6100ae610178565b6100dc6100d7366004611762565b610558565b005b6100e66105e3565b6040516001600160e01b031990911681526020016100b8565b6100dc61010d36600461177d565b610619565b6100dc6101203660046117bb565b610750565b61012d61078c565b6040516001600160a01b0390911681526020016100b8565b6100dc610153366004611762565b6107a7565b6001546100ae565b5f546001600160a01b031661012d565b6002546100ae565b5f80546001600160a01b03166101a157604051630537d15b60e41b815260040160405180910390fd5b5f805460405163c661065760e01b8152600160048201526001600160a01b039091169063c661065790602401602060405180830381865afa1580156101e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061020c91906117d2565b5f805460405163c661065760e01b81526004810183905292935090916001600160a01b039091169063c661065790602401602060405180830381865afa158015610258573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027c91906117d2565b90505f816001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102bb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102df91906117d2565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561031e573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061034291906117ed565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610381573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103a591906117ed565b90505f6103b383600a611901565b90505f6103c183600a611901565b90505f6103d260ff8516601261190f565b6103dd90600a611922565b604051631dc7f52160e01b8152600481018590526001600160a01b038a1690631dc7f52190602401602060405180830381865afa158015610420573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610444919061192d565b61044e9190611944565b60405163266d6a8360e11b8152600481018590529091505f906001600160a01b03891690634cdad50690602401602060405180830381865afa158015610496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104ba919061192d565b6040516303d1689d60e11b8152600481018690526001600160a01b038a16906307a2d13a90602401602060405180830381865afa1580156104fd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610521919061192d565b61052b9084611944565b610535919061196f565b905061054a60015442600254600354856108d8565b995050505050505050505090565b3361056161078c565b6001600160a01b0316816001600160a01b0316146105a15760405162d1953b60e31b81526001600160a01b03821660048201526024015b60405180910390fd5b816001600160a01b03163b5f036105d6576040516361798f2f60e11b81526001600160a01b0383166004820152602401610598565b6105df8261093c565b5050565b5f80516020611abb83398151915280545f9190600160a01b900460ff1661060a575f610613565b638fb3603760e01b5b91505090565b610625335b5f3661099c565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805460029190600160401b900460ff168061066f5750805467ffffffffffffffff808416911610155b1561068d5760405163f92ee8a960e01b815260040160405180910390fd5b805468ffffffffffffffffff191667ffffffffffffffff831617600160401b1781556001600160a01b0383166106d657604051630c59659760e31b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b038516179055600186905560028590556003849055805460ff60401b1916815560405167ffffffffffffffff831681527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906020015b60405180910390a1505050505050565b6107593361061e565b6003546040518291907f792ab2554bf1289b3eef409b266807d65198c165cf023652066229da587dd080905f90a3600355565b5f80516020611abb833981519152546001600160a01b031690565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156107ec5750825b90505f8267ffffffffffffffff1660011480156108085750303b155b905081158015610816575080155b156108345760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561085e57845460ff60401b1916600160401b1785555b6001600160a01b03861661088557604051630c59659760e31b815260040160405180910390fd5b61088e86610a92565b83156108d057845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602001610740565b505050505050565b5f838511156108e8575080610933565b5f610910670de0b6b3a76400006108ff898861190f565b610909898961190f565b9190610aa6565b905061092f61091f8583610b66565b8490670de0b6b3a7640000610aa6565b9150505b95945050505050565b5f80516020611abb83398151915280546001600160a01b0383166001600160a01b03199091168117825560408051918252517f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9181900360200190a15050565b5f80516020611abb8339815191525f806109d46109b761078c565b87306109c660045f8a8c61198e565b6109cf916119b5565b610d15565b91509150816108d05763ffffffff811615610a6f57825460ff60a01b1916600160a01b178355610a0261078c565b6001600160a01b03166394c7d7ee8787876040518463ffffffff1660e01b8152600401610a31939291906119e5565b5f604051808303815f87803b158015610a48575f80fd5b505af1158015610a5a573d5f803e3d5ffd5b5050845460ff60a01b19168555506108d09050565b60405162d1953b60e31b81526001600160a01b0387166004820152602401610598565b610a9a610e1d565b610aa381610e68565b50565b5f838302815f1985870982811083820303915050805f03610ada57838281610ad057610ad061195b565b0492505050610b5f565b808411610afa5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b5f815f03610b7d5750670de0b6b3a7640000610d0f565b825f03610b8b57505f610d0f565b600160ff1b8310610bd05760405162461bcd60e51b815260206004820152600f60248201526e78206f7574206f6620626f756e647360881b6044820152606401610598565b82770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328310610c2a5760405162461bcd60e51b815260206004820152600f60248201526e79206f7574206f6620626f756e647360881b6044820152606401610598565b825f670c7d713b49da000083138015610c4a5750670f43fc2c04ee000083125b15610c80575f610c5984610e79565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050610c8e565b81610c8a84610f96565b0290505b670de0b6b3a76400009005680238fd42c5cf03ffff198112801590610cbc575068070c1cc73b00c800008113155b610d005760405162461bcd60e51b815260206004820152601560248201527470726f64756374206f7574206f6620626f756e647360581b6044820152606401610598565b610d098161133b565b93505050505b92915050565b6040516001600160a01b03848116602483015283811660448301526001600160e01b0319831660648301525f9182918291829189169060840160408051601f198184030181529181526020820180516001600160e01b031663b700961360e01b17905251610d839190611a24565b5f60405180830381855afa9150503d805f8114610dbb576040519150601f19603f3d011682016040523d82523d5f602084013e610dc0565b606091505b50915091508115610e12576040815110610df25780806020019051810190610de89190611a64565b9094509250610e12565b6020815110610e125780806020019051810190610e0f9190611aa1565b93505b505094509492505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610e6657604051631afcd79f60e31b815260040160405180910390fd5b565b610e70610e1d565b610aa38161093c565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281610eb957610eb961195b565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a7640000821215610fd557610fcd826a0c097ce7bc90715b34b9f160241b81610fc757610fc761195b565b05610f96565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261102557770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261105d576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126110a5576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126110e0576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261111757693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261114e57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126111835768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126111ae57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126111e3576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312611218576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261124c576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611280576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816112a8576112a861195b565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b5f680238fd42c5cf03ffff19821215801561135f575068070c1cc73b00c800008213155b61139e5760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610598565b5f8212156113d4576113b1825f0361133b565b6a0c097ce7bc90715b34b9f160241b816113cd576113cd61195b565b0592915050565b5f6806f05b59d3b2000000831261141357506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000611449565b6803782dace9d9000000831261144557506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380611449565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126114995768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d63100000084126114d5576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261150f57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412611549576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261158257680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126115bb5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126115f4576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261162d5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6001600160a01b0381168114610aa3575f80fd5b5f60208284031215611772575f80fd5b8135610b5f8161174e565b5f805f8060808587031215611790575f80fd5b84359350602085013592506040850135915060608501356117b08161174e565b939692955090935050565b5f602082840312156117cb575f80fd5b5035919050565b5f602082840312156117e2575f80fd5b8151610b5f8161174e565b5f602082840312156117fd575f80fd5b815160ff81168114610b5f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b600181815b8085111561185b57815f19048211156118415761184161180d565b8085161561184e57918102915b93841c9390800290611826565b509250929050565b5f8261187157506001610d0f565b8161187d57505f610d0f565b8160018114611893576002811461189d576118b9565b6001915050610d0f565b60ff8411156118ae576118ae61180d565b50506001821b610d0f565b5060208310610133831016604e8410600b84101617156118dc575081810a610d0f565b6118e68383611821565b805f19048211156118f9576118f961180d565b029392505050565b5f610b5f60ff841683611863565b81810381811115610d0f57610d0f61180d565b5f610b5f8383611863565b5f6020828403121561193d575f80fd5b5051919050565b8082028115828204841417610d0f57610d0f61180d565b634e487b7160e01b5f52601260045260245ffd5b5f8261198957634e487b7160e01b5f52601260045260245ffd5b500490565b5f808585111561199c575f80fd5b838611156119a8575f80fd5b5050820193919092039150565b6001600160e01b031981358181169160048510156119dd5780818660040360031b1b83161692505b505092915050565b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f82515f5b81811015611a435760208186018101518583015201611a29565b505f920191825250919050565b80518015158114611a5f575f80fd5b919050565b5f8060408385031215611a75575f80fd5b611a7e83611a50565b9150602083015163ffffffff81168114611a96575f80fd5b809150509250929050565b5f60208284031215611ab1575f80fd5b610b5f82611a5056fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a264697066735822122049822f8cbe19ee2e8b43b57fe7369e25dc64fa149405b6e58e3c263f17def12e64736f6c63430008140033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.