Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00| Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Advanced mode: Intended for advanced users or developers and will display all Internal Transactions including zero value transfers.
Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Block | From | To | ||||
|---|---|---|---|---|---|---|---|
| 16871294 | 51 mins ago | 0 ETH | |||||
| 16871261 | 51 mins ago | 0 ETH | |||||
| 16870755 | 1 hr ago | 0 ETH | |||||
| 16859493 | 4 hrs ago | 0 ETH | |||||
| 16855932 | 5 hrs ago | 0 ETH | |||||
| 16855885 | 5 hrs ago | 0 ETH | |||||
| 16855674 | 5 hrs ago | 0 ETH | |||||
| 16848349 | 7 hrs ago | 0 ETH | |||||
| 16839473 | 9 hrs ago | 0 ETH | |||||
| 16837761 | 10 hrs ago | 0 ETH | |||||
| 16834731 | 11 hrs ago | 0 ETH | |||||
| 16826286 | 13 hrs ago | 0 ETH | |||||
| 16826192 | 13 hrs ago | 0 ETH | |||||
| 16824187 | 13 hrs ago | 0 ETH | |||||
| 16823928 | 14 hrs ago | 0 ETH | |||||
| 16823154 | 14 hrs ago | 0 ETH | |||||
| 16823120 | 14 hrs ago | 0 ETH | |||||
| 16803505 | 19 hrs ago | 0 ETH | |||||
| 16801310 | 20 hrs ago | 0 ETH | |||||
| 16801189 | 20 hrs ago | 0 ETH | |||||
| 16796409 | 21 hrs ago | 0 ETH | |||||
| 16796408 | 21 hrs ago | 0 ETH | |||||
| 16796407 | 21 hrs ago | 0 ETH | |||||
| 16796405 | 21 hrs ago | 0 ETH | |||||
| 16796404 | 21 hrs ago | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
RateAdjustmentOracle
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.20;
import "../interfaces/IRateAdjustmentOracle.sol";
import "../interfaces/IPrincipalToken.sol";
import "../interfaces/IStableSwapNG.sol";
import "../libraries/RateAdjustmentMath.sol";
import "../libraries/RayMath.sol";
import "openzeppelin-math/Math.sol";
import "openzeppelin-contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol";
import {IERC20Metadata} from "openzeppelin-contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC4626} from "openzeppelin-contracts/interfaces/IERC4626.sol";
contract RateAdjustmentOracle is AccessManagedUpgradeable, IRateAdjustmentOracle {
using Math for uint256;
using RayMath for uint256;
// state
address private curvePoolAddress;
uint256 private startTime;
uint256 private expiry;
uint256 private initialPrice;
// constants
uint64 private constant POST_INIT_ID = 2;
uint256 private constant ORACLE_DECIMALS = 18;
/* EVENTS
*****************************************************************************************************************/
event InitialPriceChanged(
uint256 indexed _previousInitialPrice,
uint256 indexed _newInitialPrice
);
/* CONSTRUCTOR
*****************************************************************************************************************/
constructor() {
_disableInitializers();
}
/* INITIALIZERS
*****************************************************************************************************************/
/** @dev See {IRateAdjustmentOracle-initialize}. */
function initialize(address _initialAuthority) external initializer {
if (_initialAuthority == address(0)) {
revert AddressError();
}
__AccessManaged_init(_initialAuthority);
}
/** @dev See {IRateAdjustmentOracle-post_initialize}. */
function post_initialize(
uint256 _initialTimestamp,
uint256 _expiry,
uint256 _initialPrice,
address _curvePoolAddress
) external override restricted reinitializer(POST_INIT_ID) {
if (_curvePoolAddress == address(0)) {
revert AddressError();
}
curvePoolAddress = _curvePoolAddress;
startTime = _initialTimestamp;
expiry = _expiry;
initialPrice = _initialPrice;
}
/* FUNCTIONS
*****************************************************************************************************************/
/** @dev See {IRateAdjustmentOracle-value}. */
function value() external view returns (uint256 rate) {
if (curvePoolAddress == address(0)) {
revert AddressesNotSet();
}
// Get the future PT value in 18 decimals
address ptAddress = IStableSwapNG(curvePoolAddress).coins(1);
address ibtAddress = IStableSwapNG(curvePoolAddress).coins(0);
address underlyingAddress = IERC4626(ibtAddress).asset();
uint8 ibtDecimals = IERC20Metadata(ibtAddress).decimals();
uint8 underlyingDecimals = IERC20Metadata(underlyingAddress).decimals();
uint256 ibtUnit = 10 ** ibtDecimals;
uint256 underlyingUnit = 10 ** underlyingDecimals;
uint256 futurePTValue = IPrincipalToken(ptAddress).convertToUnderlying(ibtUnit) *
10 ** (ORACLE_DECIMALS - underlyingDecimals);
// @dev: Curve IERC4626 oracle uses convertToAssets, which is imprecise, hence we correct it here with previewRedeem
uint256 adjustedFuturePTValue = (futurePTValue *
IERC4626(ibtAddress).convertToAssets(ibtUnit)) /
IERC4626(ibtAddress).previewRedeem(ibtUnit);
// Get the adjustment factor
rate = RateAdjustmentMath.getAdjustmentFactor(
startTime,
block.timestamp,
expiry,
initialPrice,
adjustedFuturePTValue
);
}
/** @dev See {IRateAdjustmentOracle-setInitialPrice}. */
function setInitialPrice(uint256 _newInitialPrice) external override restricted {
emit InitialPriceChanged(initialPrice, _newInitialPrice);
initialPrice = _newInitialPrice;
}
/** @dev See {IRateAdjustmentOracle-getInitialPrice}. */
function getInitialPrice() external view returns (uint256) {
return initialPrice;
}
/** @dev See {IRateAdjustmentOracle-getCurvePoolAddress}. */
function getCurvePoolAddress() external view returns (address) {
return curvePoolAddress;
}
/** @dev See {IRateAdjustmentOracle-getStartTime}. */
function getStartTime() external view returns (uint256) {
return startTime;
}
/** @dev See {IRateAdjustmentOracle-getExpiry}. */
function getExpiry() external view returns (uint256) {
return expiry;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManaged.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol";
import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol";
import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol";
import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
* permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
* implementing a policy that allows certain callers to access certain functions.
*
* IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
* functions, and ideally only used in `external` functions. See {restricted}.
*/
abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged {
/// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged
struct AccessManagedStorage {
address _authority;
bool _consumingSchedule;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00;
function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) {
assembly {
$.slot := AccessManagedStorageLocation
}
}
/**
* @dev Initializes the contract connected to an initial authority.
*/
function __AccessManaged_init(address initialAuthority) internal onlyInitializing {
__AccessManaged_init_unchained(initialAuthority);
}
function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing {
_setAuthority(initialAuthority);
}
/**
* @dev Restricts access to a function as defined by the connected Authority for this contract and the
* caller and selector of the function that entered the contract.
*
* [IMPORTANT]
* ====
* In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
* functions that are used as external entry points and are not called internally. Unless you know what you're
* doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
* implications! This is because the permissions are determined by the function that entered the contract, i.e. the
* function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
* ====
*
* [WARNING]
* ====
* Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
* function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
* functions are the only execution paths where a function selector cannot be unambiguosly determined from the calldata
* since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
* if no calldata is provided. (See {_checkCanCall}).
*
* The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
* ====
*/
modifier restricted() {
_checkCanCall(_msgSender(), _msgData());
_;
}
/// @inheritdoc IAccessManaged
function authority() public view virtual returns (address) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._authority;
}
/// @inheritdoc IAccessManaged
function setAuthority(address newAuthority) public virtual {
address caller = _msgSender();
if (caller != authority()) {
revert AccessManagedUnauthorized(caller);
}
if (newAuthority.code.length == 0) {
revert AccessManagedInvalidAuthority(newAuthority);
}
_setAuthority(newAuthority);
}
/// @inheritdoc IAccessManaged
function isConsumingScheduledOp() public view returns (bytes4) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
}
/**
* @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
* permissions set by the current authority.
*/
function _setAuthority(address newAuthority) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
$._authority = newAuthority;
emit AuthorityUpdated(newAuthority);
}
/**
* @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
* is less than 4 bytes long.
*/
function _checkCanCall(address caller, bytes calldata data) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
(bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
authority(),
caller,
address(this),
bytes4(data[0:4])
);
if (!immediate) {
if (delay > 0) {
$._consumingSchedule = true;
IAccessManager(authority()).consumeScheduledOp(caller, data);
$._consumingSchedule = false;
} else {
revert AccessManagedUnauthorized(caller);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "./IAuthority.sol";
library AuthorityUtils {
/**
* @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
* for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
* This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
*/
function canCallWithDelay(
address authority,
address caller,
address target,
bytes4 selector
) internal view returns (bool immediate, uint32 delay) {
(bool success, bytes memory data) = authority.staticcall(
abi.encodeCall(IAuthority.canCall, (caller, target, selector))
);
if (success) {
if (data.length >= 0x40) {
(immediate, delay) = abi.decode(data, (bool, uint32));
} else if (data.length >= 0x20) {
immediate = abi.decode(data, (bool));
}
}
return (immediate, delay);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)
pragma solidity ^0.8.20;
interface IAccessManaged {
/**
* @dev Authority that manages this contract was updated.
*/
event AuthorityUpdated(address authority);
error AccessManagedUnauthorized(address caller);
error AccessManagedRequiredDelay(address caller, uint32 delay);
error AccessManagedInvalidAuthority(address authority);
/**
* @dev Returns the current authority.
*/
function authority() external view returns (address);
/**
* @dev Transfers control to a new authority. The caller must be the current authority.
*/
function setAuthority(address) external;
/**
* @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
* being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
* attacker controlled calls.
*/
function isConsumingScheduledOp() external view returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol)
pragma solidity ^0.8.20;
import {IAccessManaged} from "./IAccessManaged.sol";
import {Time} from "../../utils/types/Time.sol";
interface IAccessManager {
/**
* @dev A delayed operation was scheduled.
*/
event OperationScheduled(
bytes32 indexed operationId,
uint32 indexed nonce,
uint48 schedule,
address caller,
address target,
bytes data
);
/**
* @dev A scheduled operation was executed.
*/
event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev A scheduled operation was canceled.
*/
event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev Informational labelling for a roleId.
*/
event RoleLabel(uint64 indexed roleId, string label);
/**
* @dev Emitted when `account` is granted `roleId`.
*
* NOTE: The meaning of the `since` argument depends on the `newMember` argument.
* If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
* otherwise it indicates the execution delay for this account and roleId is updated.
*/
event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
/**
* @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
*/
event RoleRevoked(uint64 indexed roleId, address indexed account);
/**
* @dev Role acting as admin over a given `roleId` is updated.
*/
event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
/**
* @dev Role acting as guardian over a given `roleId` is updated.
*/
event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
/**
* @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
*/
event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
/**
* @dev Target mode is updated (true = closed, false = open).
*/
event TargetClosed(address indexed target, bool closed);
/**
* @dev Role required to invoke `selector` on `target` is updated to `roleId`.
*/
event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
/**
* @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
*/
event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
error AccessManagerAlreadyScheduled(bytes32 operationId);
error AccessManagerNotScheduled(bytes32 operationId);
error AccessManagerNotReady(bytes32 operationId);
error AccessManagerExpired(bytes32 operationId);
error AccessManagerLockedAccount(address account);
error AccessManagerLockedRole(uint64 roleId);
error AccessManagerBadConfirmation();
error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
error AccessManagerUnauthorizedConsume(address target);
error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
error AccessManagerInvalidInitialAdmin(address initialAdmin);
/**
* @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
* no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
* & {execute} workflow.
*
* This function is usually called by the targeted contract to control immediate execution of restricted functions.
* Therefore we only return true if the call can be performed without any delay. If the call is subject to a
* previously set delay (not zero), then the function should return false and the caller should schedule the operation
* for future execution.
*
* If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
* the operation can be executed if and only if delay is greater than 0.
*
* NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
* is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
* to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
*
* NOTE: This function does not report the permissions of this manager itself. These are defined by the
* {_canCallSelf} function instead.
*/
function canCall(
address caller,
address target,
bytes4 selector
) external view returns (bool allowed, uint32 delay);
/**
* @dev Expiration delay for scheduled proposals. Defaults to 1 week.
*
* IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
* disabling any scheduling usage.
*/
function expiration() external view returns (uint32);
/**
* @dev Minimum setback for all delay updates, with the exception of execution delays. It
* can be increased without setback (and reset via {revokeRole} in the case event of an
* accidental increase). Defaults to 5 days.
*/
function minSetback() external view returns (uint32);
/**
* @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
*/
function isTargetClosed(address target) external view returns (bool);
/**
* @dev Get the role required to call a function.
*/
function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
/**
* @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
*/
function getTargetAdminDelay(address target) external view returns (uint32);
/**
* @dev Get the id of the role that acts as an admin for the given role.
*
* The admin permission is required to grant the role, revoke the role and update the execution delay to execute
* an operation that is restricted to this role.
*/
function getRoleAdmin(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role that acts as a guardian for a given role.
*
* The guardian permission allows canceling operations that have been scheduled under the role.
*/
function getRoleGuardian(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role current grant delay.
*
* Its value may change at any point without an event emitted following a call to {setGrantDelay}.
* Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
*/
function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
/**
* @dev Get the access details for a given account for a given role. These details include the timepoint at which
* membership becomes active, and the delay applied to all operation by this user that requires this permission
* level.
*
* Returns:
* [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
* [1] Current execution delay for the account.
* [2] Pending execution delay for the account.
* [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
*/
function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48);
/**
* @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
* permission might be associated with an execution delay. {getAccess} can provide more details.
*/
function hasRole(uint64 roleId, address account) external view returns (bool, uint32);
/**
* @dev Give a label to a role, for improved role discoverability by UIs.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleLabel} event.
*/
function labelRole(uint64 roleId, string calldata label) external;
/**
* @dev Add `account` to `roleId`, or change its execution delay.
*
* This gives the account the authorization to call any function that is restricted to this role. An optional
* execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
* that is restricted to members of this role. The user will only be able to execute the operation after the delay has
* passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
*
* If the account has already been granted this role, the execution delay will be updated. This update is not
* immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
* called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
* operation executed in the 3 hours that follows this update was indeed scheduled before this update.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - granted role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleGranted} event.
*/
function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
/**
* @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
* no effect.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - revoked role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function revokeRole(uint64 roleId, address account) external;
/**
* @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
* the role this call has no effect.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function renounceRole(uint64 roleId, address callerConfirmation) external;
/**
* @dev Change admin role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleAdminChanged} event
*/
function setRoleAdmin(uint64 roleId, uint64 admin) external;
/**
* @dev Change guardian role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGuardianChanged} event
*/
function setRoleGuardian(uint64 roleId, uint64 guardian) external;
/**
* @dev Update the delay for granting a `roleId`.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGrantDelayChanged} event.
*/
function setGrantDelay(uint64 roleId, uint32 newDelay) external;
/**
* @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetFunctionRoleUpdated} event per selector.
*/
function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
/**
* @dev Set the delay for changing the configuration of a given target contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetAdminDelayUpdated} event.
*/
function setTargetAdminDelay(address target, uint32 newDelay) external;
/**
* @dev Set the closed flag for a contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetClosed} event.
*/
function setTargetClosed(address target, bool closed) external;
/**
* @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
* operation is not yet scheduled, has expired, was executed, or was canceled.
*/
function getSchedule(bytes32 id) external view returns (uint48);
/**
* @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
* been scheduled.
*/
function getNonce(bytes32 id) external view returns (uint32);
/**
* @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
* choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
* required for the caller. The special value zero will automatically set the earliest possible time.
*
* Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
* the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
* scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
*
* Emits a {OperationScheduled} event.
*
* NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
* this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
* contract if it is using standard Solidity ABI encoding.
*/
function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32);
/**
* @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
* execution delay is 0.
*
* Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
* operation wasn't previously scheduled (if the caller doesn't have an execution delay).
*
* Emits an {OperationExecuted} event only if the call was scheduled and delayed.
*/
function execute(address target, bytes calldata data) external payable returns (uint32);
/**
* @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
* operation that is cancelled.
*
* Requirements:
*
* - the caller must be the proposer, a guardian of the targeted function, or a global admin
*
* Emits a {OperationCanceled} event.
*/
function cancel(address caller, address target, bytes calldata data) external returns (uint32);
/**
* @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
* (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
*
* This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
* with all the verifications that it implies.
*
* Emit a {OperationExecuted} event.
*/
function consumeScheduledOp(address caller, bytes calldata data) external;
/**
* @dev Hashing function for delayed operations.
*/
function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
/**
* @dev Changes the authority of a target managed by this manager instance.
*
* Requirements:
*
* - the caller must be a global admin
*/
function updateAuthority(address target, address newAuthority) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard interface for permissioning originally defined in Dappsys.
*/
interface IAuthority {
/**
* @dev Returns true if the caller can invoke on a target the function identified by a function selector.
*/
function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashBorrower.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC3156 FlashBorrower, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*/
interface IERC3156FlashBorrower {
/**
* @dev Receive a flash loan.
* @param initiator The initiator of the loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param fee The additional amount of tokens to repay.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
* @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
*/
function onFlashLoan(
address initiator,
address token,
uint256 amount,
uint256 fee,
bytes calldata data
) external returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashLender.sol)
pragma solidity ^0.8.20;
import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
/**
* @dev Interface of the ERC3156 FlashLender, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*/
interface IERC3156FlashLender {
/**
* @dev The amount of currency available to be lended.
* @param token The loan currency.
* @return The amount of `token` that can be borrowed.
*/
function maxFlashLoan(address token) external view returns (uint256);
/**
* @dev The fee to be charged for a given loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @return The amount of `token` to be charged for the loan, on top of the returned principal.
*/
function flashFee(address token, uint256 amount) external view returns (uint256);
/**
* @dev Initiate a flash loan.
* @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
*/
function flashLoan(
IERC3156FlashBorrower receiver,
address token,
uint256 amount,
bytes calldata data
) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// ? `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// ? `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
/**
* @dev This library provides helpers for manipulating time-related objects.
*
* It uses the following types:
* - `uint48` for timepoints
* - `uint32` for durations
*
* While the library doesn't provide specific types for timepoints and duration, it does provide:
* - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
* - additional helper functions
*/
library Time {
using Time for *;
/**
* @dev Get the block timestamp as a Timepoint.
*/
function timestamp() internal view returns (uint48) {
return SafeCast.toUint48(block.timestamp);
}
/**
* @dev Get the block number as a Timepoint.
*/
function blockNumber() internal view returns (uint48) {
return SafeCast.toUint48(block.number);
}
// ==================================================== Delay =====================================================
/**
* @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
* future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
* This allows updating the delay applied to some operation while keeping some guarantees.
*
* In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
* some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
* the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
* still apply for some time.
*
*
* The `Delay` type is 112 bits long, and packs the following:
*
* ```
* | [uint48]: effect date (timepoint)
* | | [uint32]: value before (duration)
* ? ? ? [uint32]: value after (duration)
* 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
* ```
*
* NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
* supported.
*/
type Delay is uint112;
/**
* @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
*/
function toDelay(uint32 duration) internal pure returns (Delay) {
return Delay.wrap(duration);
}
/**
* @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
* change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
*/
function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
(uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
}
/**
* @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
* effect timepoint is 0, then the pending value should not be considered.
*/
function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
return _getFullAt(self, timestamp());
}
/**
* @dev Get the current value.
*/
function get(Delay self) internal view returns (uint32) {
(uint32 delay, , ) = self.getFull();
return delay;
}
/**
* @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
* enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
* new delay becomes effective.
*/
function withUpdate(
Delay self,
uint32 newValue,
uint32 minSetback
) internal view returns (Delay updatedDelay, uint48 effect) {
uint32 value = self.get();
uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
effect = timestamp() + setback;
return (pack(value, newValue, effect), effect);
}
/**
* @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
*/
function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
uint112 raw = Delay.unwrap(self);
valueAfter = uint32(raw);
valueBefore = uint32(raw >> 32);
effect = uint48(raw >> 64);
return (valueBefore, valueAfter, effect);
}
/**
* @dev pack the components into a Delay object.
*/
function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
import "openzeppelin-contracts/interfaces/IERC20.sol";
import "openzeppelin-contracts/interfaces/IERC20Metadata.sol";
import "openzeppelin-contracts/interfaces/IERC3156FlashLender.sol";
interface IPrincipalToken is IERC20, IERC20Metadata, IERC3156FlashLender {
/* ERRORS
*****************************************************************************************************************/
error InvalidDecimals();
error BeaconNotSet();
error PTExpired();
error PTNotExpired();
error RateError();
error AddressError();
error UnauthorizedCaller();
error RatesAtExpiryAlreadyStored();
error ERC5143SlippageProtectionFailed();
error InsufficientBalance();
error FlashLoanExceedsMaxAmount();
error FlashLoanCallbackFailed();
error NoRewardsProxy();
error ClaimRewardsFailed();
/* Functions
*****************************************************************************************************************/
function initialize(address _ibt, uint256 _duration, address initialAuthority) external;
/**
* @notice Toggle Pause
* @dev Should only be called in extraordinary situations by the admin of the contract
*/
function pause() external;
/**
* @notice Toggle UnPause
* @dev Should only be called in extraordinary situations by the admin of the contract
*/
function unPause() external;
/**
* @notice Deposits amount of assets in the PT vault
* @param assets The amount of assets being deposited
* @param receiver The receiver address of the shares
* @return shares The amount of shares minted (same amount for PT & yt)
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @notice Deposits amount of assets in the PT vault
* @param assets The amount of assets being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver the receiver address of the YTs
* @return shares The amount of shares minted (same amount for PT & yt)
*/
function deposit(
uint256 assets,
address ptReceiver,
address ytReceiver
) external returns (uint256 shares);
/**
* @notice Deposits amount of assets with a lower bound on shares received
* @param assets The amount of assets being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver The receiver address of the YTs
* @param minShares The minimum allowed shares from this deposit
* @return shares The amount of shares actually minted to the receiver
*/
function deposit(
uint256 assets,
address ptReceiver,
address ytReceiver,
uint256 minShares
) external returns (uint256 shares);
/**
* @notice Same as normal deposit but with IBTs
* @param ibts The amount of IBT being deposited
* @param receiver The receiver address of the shares
* @return shares The amount of shares minted to the receiver
*/
function depositIBT(uint256 ibts, address receiver) external returns (uint256 shares);
/**
* @notice Same as normal deposit but with IBTs
* @param ibts The amount of IBT being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver the receiver address of the YTs
* @return shares The amount of shares minted to the receiver
*/
function depositIBT(
uint256 ibts,
address ptReceiver,
address ytReceiver
) external returns (uint256 shares);
/**
* @notice Same as normal deposit but with IBTs
* @param ibts The amount of IBT being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver The receiver address of the YTs
* @param minShares The minimum allowed shares from this deposit
* @return shares The amount of shares minted to the receiver
*/
function depositIBT(
uint256 ibts,
address ptReceiver,
address ytReceiver,
uint256 minShares
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends assets to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the assets
* @param owner The owner of the shares
* @return assets The actual amount of assets received for burning the shares
*/
function redeem(
uint256 shares,
address receiver,
address owner
) external returns (uint256 assets);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends assets to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the assets
* @param owner The owner of the shares
* @param minAssets The minimum assets that should be returned to user
* @return assets The actual amount of assets received for burning the shares
*/
function redeem(
uint256 shares,
address receiver,
address owner,
uint256 minAssets
) external returns (uint256 assets);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends IBTs to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares
* @return ibts The actual amount of IBT received for burning the shares
*/
function redeemForIBT(
uint256 shares,
address receiver,
address owner
) external returns (uint256 ibts);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends IBTs to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares
* @param minIbts The minimum IBTs that should be returned to user
* @return ibts The actual amount of IBT received for burning the shares
*/
function redeemForIBT(
uint256 shares,
address receiver,
address owner,
uint256 minIbts
) external returns (uint256 ibts);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
* @param assets The amount of assets to be received
* @param receiver The address that will receive the assets
* @param owner The owner of the shares (PTs and YTs)
* @return shares The actual amount of shares burnt for receiving the assets
*/
function withdraw(
uint256 assets,
address receiver,
address owner
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
* @param assets The amount of assets to be received
* @param receiver The address that will receive the assets
* @param owner The owner of the shares (PTs and YTs)
* @param maxShares The maximum shares allowed to be burnt
* @return shares The actual amount of shares burnt for receiving the assets
*/
function withdraw(
uint256 assets,
address receiver,
address owner,
uint256 maxShares
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
* @param ibts The amount of IBT to be received
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares (PTs and YTs)
* @return shares The actual amount of shares burnt for receiving the IBTs
*/
function withdrawIBT(
uint256 ibts,
address receiver,
address owner
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
* @param ibts The amount of IBT to be received
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares (PTs and YTs)
* @param maxShares The maximum shares allowed to be burnt
* @return shares The actual amount of shares burnt for receiving the IBTs
*/
function withdrawIBT(
uint256 ibts,
address receiver,
address owner,
uint256 maxShares
) external returns (uint256 shares);
/**
* @notice Updates _user's yield since last update
* @param _user The user whose yield will be updated
* @return updatedUserYieldInIBT The unclaimed yield of the user in IBT (not just the updated yield)
*/
function updateYield(address _user) external returns (uint256 updatedUserYieldInIBT);
/**
* @notice Claims caller's unclaimed yield in asset
* @param _receiver The receiver of yield
* @param _minAssets The minimum amount of assets that should be received
* @return yieldInAsset The amount of yield claimed in asset
*/
function claimYield(
address _receiver,
uint256 _minAssets
) external returns (uint256 yieldInAsset);
/**
* @notice Claims caller's unclaimed yield in IBT
* @param _receiver The receiver of yield
* @param _minIBT The minimum amount of IBT that should be received
* @return yieldInIBT The amount of yield claimed in IBT
*/
function claimYieldInIBT(
address _receiver,
uint256 _minIBT
) external returns (uint256 yieldInIBT);
/**
* @notice Claims the collected ibt fees and redeems them to the fee collector
* @param _minAssets The minimum amount of assets that should be received
* @return assets The amount of assets sent to the fee collector
*/
function claimFees(uint256 _minAssets) external returns (uint256 assets);
/**
* @notice Updates yield of both sender and receiver of YTs
* @param _from the sender of YTs
* @param _to the receiver of YTs
*/
function beforeYtTransfer(address _from, address _to) external;
/**
* Call the claimRewards function of the rewards contract
* @param data The optional data to be passed to the rewards contract
*/
function claimRewards(bytes memory data) external;
/* SETTERS
*****************************************************************************************************************/
/**
* @notice Stores PT and IBT rates at expiry. Ideally, it should be called the day of expiry
*/
function storeRatesAtExpiry() external;
/** Set a new Rewards Proxy
* @param _rewardsProxy The address of the new reward proxy
*/
function setRewardsProxy(address _rewardsProxy) external;
/* GETTERS
*****************************************************************************************************************/
/**
* @notice Returns the amount of shares minted for the theorical deposited amount of assets
* @param assets The amount of assets deposited
* @return The amount of shares minted
*/
function previewDeposit(uint256 assets) external view returns (uint256);
/**
* @notice Returns the amount of shares minted for the theorical deposited amount of IBT
* @param ibts The amount of IBT deposited
* @return The amount of shares minted
*/
function previewDepositIBT(uint256 ibts) external view returns (uint256);
/**
* @notice Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
* @param receiver The receiver of the shares
* @return The maximum amount of assets that can be deposited
*/
function maxDeposit(address receiver) external view returns (uint256);
/**
* @notice Returns the theorical amount of shares that need to be burnt to receive assets of underlying
* @param assets The amount of assets to receive
* @return The amount of shares burnt
*/
function previewWithdraw(uint256 assets) external view returns (uint256);
/**
* @notice Returns the theorical amount of shares that need to be burnt to receive amount of IBT
* @param ibts The amount of IBT to receive
* @return The amount of shares burnt
*/
function previewWithdrawIBT(uint256 ibts) external view returns (uint256);
/**
* @notice Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
* @param owner The owner of the Vault shares
* @return The maximum amount of assets that can be withdrawn
*/
function maxWithdraw(address owner) external view returns (uint256);
/**
* @notice Returns the maximum amount of the IBT that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
* @param owner The owner of the Vault shares
* @return The maximum amount of IBT that can be withdrawn
*/
function maxWithdrawIBT(address owner) external view returns (uint256);
/**
* @notice Returns the amount of assets received for the theorical amount of burnt shares
* @param shares The amount of shares to burn
* @return The amount of assets received
*/
function previewRedeem(uint256 shares) external view returns (uint256);
/**
* @notice Returns the amount of IBT received for the theorical amount of burnt shares
* @param shares The amount of shares to burn
* @return The amount of IBT received
*/
function previewRedeemForIBT(uint256 shares) external view returns (uint256);
/**
* @notice Returns the maximum amount of Vault shares that can be redeemed by the owner
* @notice This function behaves differently before and after expiry. Before expiry an equal amount of PT and YT
* needs to be burnt, while after expiry only PTs are burnt.
* @param owner The owner of the shares
* @return The maximum amount of shares that can be redeemed
*/
function maxRedeem(address owner) external view returns (uint256);
/**
* Returns the total amount of the underlying asset that is owned by the Vault in the form of IBT.
*/
function totalAssets() external view returns (uint256);
/**
* @notice Converts an underlying amount in principal. Equivalent to ERC-4626's convertToShares method.
* @param underlyingAmount The amount of underlying (or assets) to convert
* @return The resulting amount of principal (or shares)
*/
function convertToPrincipal(uint256 underlyingAmount) external view returns (uint256);
/**
* @notice Converts a principal amount in underlying. Equivalent to ERC-4626's convertToAssets method.
* @param principalAmount The amount of principal (or shares) to convert
* @return The resulting amount of underlying (or assets)
*/
function convertToUnderlying(uint256 principalAmount) external view returns (uint256);
/**
* @notice Returns whether or not the contract is paused.
* @return true if the contract is paused, and false otherwise
*/
function paused() external view returns (bool);
/**
* @notice Returns the unix timestamp (uint256) at which the PT contract expires
* @return The unix timestamp (uint256) when PTs become redeemable
*/
function maturity() external view returns (uint256);
/**
* @notice Returns the duration of the PT contract
* @return The duration (in s) to expiry/maturity of the PT contract
*/
function getDuration() external view returns (uint256);
/**
* @notice Returns the address of the underlying token (or asset). Equivalent to ERC-4626's asset method.
* @return The address of the underlying token (or asset)
*/
function underlying() external view returns (address);
/**
* @notice Returns the IBT address of the PT contract
* @return ibt The address of the IBT
*/
function getIBT() external view returns (address ibt);
/**
* @notice Returns the yt address of the PT contract
* @return yt The address of the yt
*/
function getYT() external view returns (address yt);
/**
* @notice Returns the current ibtRate
* @return The current ibtRate
*/
function getIBTRate() external view returns (uint256);
/**
* @notice Returns the current ptRate
* @return The current ptRate
*/
function getPTRate() external view returns (uint256);
/**
* @notice Returns 1 unit of IBT
* @return The IBT unit
*/
function getIBTUnit() external view returns (uint256);
/**
* @notice Get the unclaimed fees in IBT
* @return The unclaimed fees in IBT
*/
function getUnclaimedFeesInIBT() external view returns (uint256);
/**
* @notice Get the total collected fees in IBT (claimed and unclaimed)
* @return The total fees in IBT
*/
function getTotalFeesInIBT() external view returns (uint256);
/**
* @notice Get the tokenization fee of the PT
* @return The tokenization fee
*/
function getTokenizationFee() external view returns (uint256);
/**
* @notice Get the current IBT yield of the user
* @param _user The address of the user to get the current yield from
* @return The yield of the user in IBT
*/
function getCurrentYieldOfUserInIBT(address _user) external view returns (uint256);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
interface IRateAdjustmentOracle {
/* ERRORS
*****************************************************************************************************************/
error AddressError();
error AddressesNotSet();
error PostInitCalledBeforeInit();
/* Functions
*****************************************************************************************************************/
/**
* @notice First function called after contract depoyment, sets the contract authority
* @param _initialAuthority Initial authority of the rate oracle
*/
function initialize(address _initialAuthority) external;
/**
* @dev Function called after deployment of the associated Curve Pool to initialize the remaining state.
* @dev Deployment of the Curve Pool requires the address of the rate adjustment oracle, while the rate adjustment
* @dev oracle needs the address of the Curve Pool to make function calls. Therefore, initialization is done in two steps.
* @param _startTimestamp The PT deployment time
* @param _expiry The PT expiry
* @param _initialPrice The initial PT/IBT exchange rate
* @param _curvePoolAddress Address of the curve pool
*/
function post_initialize(
uint256 _startTimestamp,
uint256 _expiry,
uint256 _initialPrice,
address _curvePoolAddress
) external;
/**
* @notice Function reporting the oracle value used in curve stableswap pool
* @return Multiplicative adjustment factor for last_prices in between each two trades
*/
function value() external view returns (uint256);
/**
* @notice Function to change the current initial price
* @param _newInitialPrice new initial price we want to set
*/
function setInitialPrice(uint256 _newInitialPrice) external;
/**
* @notice Getter for the current initial price
* @return current initial price
*/
function getInitialPrice() external view returns (uint256);
/**
* @notice Getter for the curve pool address of the rate adjustment oracle
* @return curve pool address
*/
function getCurvePoolAddress() external view returns (address);
/**
* Getter for the start time of the pt
* @return start time of the pt
*/
function getStartTime() external view returns (uint256);
/**
* @notice Getter for the expiry of the pt
* @return expiry of the pt
*/
function getExpiry() external view returns (uint256);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.4;
interface IStableSwapNG {
function A() external view returns (uint256);
function A_precise() external view returns (uint256);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function D_ma_time() external view returns (uint256);
function D_oracle() external view returns (uint256);
function N_COINS() external view returns (uint256);
function add_liquidity(
uint256[] memory _amounts,
uint256 _min_mint_amount,
address _receiver
) external returns (uint256);
function admin_balances(uint256 arg0) external view returns (uint256);
function admin_fee() external view returns (uint256);
function allowance(address arg0, address arg1) external view returns (uint256);
function approve(address _spender, uint256 _value) external returns (bool);
function balanceOf(address arg0) external view returns (uint256);
function balances(uint256 i) external view returns (uint256);
function calc_token_amount(
uint256[] memory _amounts,
bool _is_deposit
) external view returns (uint256);
function calc_withdraw_one_coin(uint256 _burn_amount, int128 i) external view returns (uint256);
function coins(uint256 arg0) external view returns (address);
function decimals() external view returns (uint8);
function dynamic_fee(int128 i, int128 j) external view returns (uint256);
function ema_price(uint256 i) external view returns (uint256);
function exchange(int128 i, int128 j, uint256 _dx, uint256 _min_dy) external returns (uint256);
function exchange(
int128 i,
int128 j,
uint256 _dx,
uint256 _min_dy,
address _receiver
) external returns (uint256);
function exchange_received(
int128 i,
int128 j,
uint256 _dx,
uint256 _min_dy
) external returns (uint256);
function exchange_received(
int128 i,
int128 j,
uint256 _dx,
uint256 _min_dy,
address _receiver
) external returns (uint256);
function fee() external view returns (uint256);
function future_A() external view returns (uint256);
function future_A_time() external view returns (uint256);
function get_balances() external view returns (uint256[] memory);
function get_dx(int128 i, int128 j, uint256 dy) external view returns (uint256);
function get_dy(int128 i, int128 j, uint256 dx) external view returns (uint256);
function get_p(uint256 i) external view returns (uint256);
function get_virtual_price() external view returns (uint256);
function initial_A() external view returns (uint256);
function initial_A_time() external view returns (uint256);
function last_price(uint256 i) external view returns (uint256);
function ma_exp_time() external view returns (uint256);
function ma_last_time() external view returns (uint256);
function name() external view returns (string memory);
function nonces(address arg0) external view returns (uint256);
function offpeg_fee_multiplier() external view returns (uint256);
function permit(
address _owner,
address _spender,
uint256 _value,
uint256 _deadline,
uint8 _v,
bytes32 _r,
bytes32 _s
) external returns (bool);
function price_oracle(uint256 i) external view returns (uint256);
function ramp_A(uint256 _future_A, uint256 _future_time) external;
function remove_liquidity(
uint256 _burn_amount,
uint256[] memory _min_amounts
) external returns (uint256[] memory);
function remove_liquidity(
uint256 _burn_amount,
uint256[] memory _min_amounts,
address _receiver
) external returns (uint256[] memory);
function remove_liquidity(
uint256 _burn_amount,
uint256[] memory _min_amounts,
address _receiver,
bool _claim_admin_fees
) external returns (uint256[] memory);
function remove_liquidity_imbalance(
uint256[] memory _amounts,
uint256 _max_burn_amount
) external returns (uint256);
function remove_liquidity_imbalance(
uint256[] memory _amounts,
uint256 _max_burn_amount,
address _receiver
) external returns (uint256);
function remove_liquidity_one_coin(
uint256 _burn_amount,
int128 i,
uint256 _min_received
) external returns (uint256);
function remove_liquidity_one_coin(
uint256 _burn_amount,
int128 i,
uint256 _min_received,
address _receiver
) external returns (uint256);
function salt() external view returns (bytes32);
function set_ma_exp_time(uint256 _ma_exp_time, uint256 _D_ma_time) external;
function set_new_fee(uint256 _new_fee, uint256 _new_offpeg_fee_multiplier) external;
function stop_ramp_A() external;
function stored_rates() external view returns (uint256[] memory);
function symbol() external view returns (string memory);
function totalSupply() external view returns (uint256);
function transfer(address _to, uint256 _value) external returns (bool);
function transferFrom(address _from, address _to, uint256 _value) external returns (bool);
function version() external view returns (string memory);
function withdraw_admin_fees() external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.8.0;
/* solhint-disable */
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
unchecked {
require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
unchecked {
// The real natural logarithm is not defined for negative numbers or zero.
require(a > 0, "out of bounds");
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
}
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
unchecked {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
require(x < 2 ** 255, "x out of bounds");
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
require(y < MILD_EXPONENT_BOUND, "y out of bounds");
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) *
y_int256 +
((ln_36_x % ONE_18) * y_int256) /
ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
"product out of bounds"
);
return uint256(exp(logx_times_y));
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
unchecked {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
unchecked {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.20;
import "../interfaces/IRateAdjustmentOracle.sol";
import "openzeppelin-math/Math.sol";
import "./LogExpMath.sol";
library RateAdjustmentMath {
using Math for uint256;
uint256 public constant UNIT = 10 ** 18;
/**
* @notice Computes the rate of the Principal Token in underlying, given the initial discount in underlying.
* @notice This rate is used internally in the Curve Pool for price adjustment. The oracle quotes the Principal Token
* @notice price in unerlying according to P(t,T)=exp(-r(T-t)), where one assumes that the life of the instrument starts
* @notice at 0, the current timestamp is t, and the expiry is T >= t. Here r represents the instantaneous forward rate.
* @notice This formula is equivalent to what is given below.
* @param initialTimestamp Timestamp of deployment of the Principal Token
* @param currentTimestamp Current timestamp
* @param expiryTimestamp Expiry Timestamp of the Principal Token
* @param initialPrice Value of the Principal Token in underlying at the beginning of the term. Uniquely specifies
* the discount and the initial implied rate.
* @param futurePTValue Face value of a unit of Principal Token. Can be less than one unit of unerlying if the associated
* ibt suffered from negative interest rates.
* @return rate The rate of the PT in underlying at time current_timestamp
*/
function getAdjustmentFactor(
uint256 initialTimestamp,
uint256 currentTimestamp,
uint256 expiryTimestamp,
uint256 initialPrice,
uint256 futurePTValue
) internal pure returns (uint256 rate) {
// The value of an expired bond does not change in further time.
// The bond is redeemable for its face value.
if (currentTimestamp > expiryTimestamp) {
return futurePTValue;
}
// P(t,T) = ptRate * init_price ^ ((T-t)/(T-t0))
uint256 exp = (expiryTimestamp - currentTimestamp).mulDiv(
UNIT,
expiryTimestamp - initialTimestamp
);
rate = futurePTValue.mulDiv(LogExpMath.pow(initialPrice, exp), UNIT);
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.20;
/**
* @title RayMath library
* @author Spectra Finance
* @notice Provides conversions for/to any decimal tokens to/from ray.
* @dev Conversions from Ray are rounded down.
*/
library RayMath {
/// @dev 27 decimal unit
uint256 public constant RAY_UNIT = 1e27;
uint256 public constant RAY_DECIMALS = 27;
/**
* @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals.
* @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals.
* @param _decimals The target decimal precision for the converted amount.
* @return b The amount converted from Ray to the specified decimal precision.
*/
function fromRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) {
uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
assembly {
b := div(_a, decimals_ratio)
}
}
/**
* @dev Converts a value from Ray (27-decimal precision) to a representation with a specified number of decimals.
* @param _a The amount in Ray to be converted. Ray is a fixed-point representation with 27 decimals.
* @param _decimals The target decimal precision for the converted amount.
* @param _roundUp If true, the function rounds up the result to the nearest integer value.
* If false, it truncates (rounds down) to the nearest integer.
* @return b The amount converted from Ray to the specified decimal precision, rounded as specified.
*/
function fromRay(
uint256 _a,
uint256 _decimals,
bool _roundUp
) internal pure returns (uint256 b) {
uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
assembly {
b := div(_a, decimals_ratio)
if and(eq(_roundUp, 1), gt(mod(_a, decimals_ratio), 0)) {
b := add(b, 1)
}
}
}
/**
* @dev Converts a value with a specified number of decimals to Ray (27-decimal precision).
* @param _a The amount to be converted, specified in a decimal format.
* @param _decimals The number of decimals in the representation of 'a'.
* @return b The amount in Ray, converted from the specified decimal precision.
* Ensures that the conversion maintains the value's integrity (no overflow).
*/
function toRay(uint256 _a, uint256 _decimals) internal pure returns (uint256 b) {
uint256 decimals_ratio = 10 ** (RAY_DECIMALS - _decimals);
// to avoid overflow, b/decimals_ratio == _a
assembly {
b := mul(_a, decimals_ratio)
if iszero(eq(div(b, decimals_ratio), _a)) {
revert(0, 0)
}
}
}
}{
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"appendCBOR": true,
"bytecodeHash": "ipfs",
"useLiteralContent": false
},
"optimizer": {
"enabled": true,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"remappings": [
"ds-test/=lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
"openzeppelin-erc20-basic/=lib/openzeppelin-contracts/contracts/token/ERC20/",
"openzeppelin-erc20-extensions/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/",
"openzeppelin-erc20/=lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/",
"openzeppelin-math/=lib/openzeppelin-contracts/contracts/utils/math/",
"openzeppelin-proxy/=lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/",
"openzeppelin-utils/=lib/openzeppelin-contracts/contracts/utils/",
"config/=lib/spectra-contracts-configs/script/",
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"DiamondRouter/=lib/DiamondRouter/",
"halmos-cheatcodes/=lib/DiamondRouter/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"solidity-stringutils/=lib/DiamondRouter/lib/solidity-stringutils/",
"spectra-contracts-configs/=lib/spectra-contracts-configs/"
],
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"authority","type":"address"}],"name":"AccessManagedInvalidAuthority","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"uint32","name":"delay","type":"uint32"}],"name":"AccessManagedRequiredDelay","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"AccessManagedUnauthorized","type":"error"},{"inputs":[],"name":"AddressError","type":"error"},{"inputs":[],"name":"AddressesNotSet","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"PostInitCalledBeforeInit","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_previousInitialPrice","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"_newInitialPrice","type":"uint256"}],"name":"InitialPriceChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurvePoolAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getExpiry","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInitialPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_initialAuthority","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isConsumingScheduledOp","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_initialTimestamp","type":"uint256"},{"internalType":"uint256","name":"_expiry","type":"uint256"},{"internalType":"uint256","name":"_initialPrice","type":"uint256"},{"internalType":"address","name":"_curvePoolAddress","type":"address"}],"name":"post_initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newInitialPrice","type":"uint256"}],"name":"setInitialPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"value","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"}],"stateMutability":"view","type":"function"}]Contract Creation Code
608060405234801561000f575f80fd5b5061001861001d565b6100cf565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff161561006d5760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b03908116146100cc5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b611b10806100dc5f395ff3fe608060405234801561000f575f80fd5b50600436106100a6575f3560e01c80639f4ba0ee1161006e5780639f4ba0ee14610112578063bf7e214f14610125578063c4d66de814610145578063c828371e14610158578063d568499c14610160578063f61c266b14610170575f80fd5b806306f660ef146100aa5780633fa4f245146100c15780637a9e5e4b146100c95780638fb36037146100de57806395eeb400146100ff575b5f80fd5b6003545b6040519081526020015b60405180910390f35b6100ae610178565b6100dc6100d7366004611762565b610558565b005b6100e66105e3565b6040516001600160e01b031990911681526020016100b8565b6100dc61010d36600461177d565b610619565b6100dc6101203660046117bb565b610750565b61012d61078c565b6040516001600160a01b0390911681526020016100b8565b6100dc610153366004611762565b6107a7565b6001546100ae565b5f546001600160a01b031661012d565b6002546100ae565b5f80546001600160a01b03166101a157604051630537d15b60e41b815260040160405180910390fd5b5f805460405163c661065760e01b8152600160048201526001600160a01b039091169063c661065790602401602060405180830381865afa1580156101e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061020c91906117d2565b5f805460405163c661065760e01b81526004810183905292935090916001600160a01b039091169063c661065790602401602060405180830381865afa158015610258573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027c91906117d2565b90505f816001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102bb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102df91906117d2565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561031e573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061034291906117ed565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610381573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103a591906117ed565b90505f6103b383600a611901565b90505f6103c183600a611901565b90505f6103d260ff8516601261190f565b6103dd90600a611922565b604051631dc7f52160e01b8152600481018590526001600160a01b038a1690631dc7f52190602401602060405180830381865afa158015610420573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610444919061192d565b61044e9190611944565b60405163266d6a8360e11b8152600481018590529091505f906001600160a01b03891690634cdad50690602401602060405180830381865afa158015610496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104ba919061192d565b6040516303d1689d60e11b8152600481018690526001600160a01b038a16906307a2d13a90602401602060405180830381865afa1580156104fd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610521919061192d565b61052b9084611944565b610535919061196f565b905061054a60015442600254600354856108d8565b995050505050505050505090565b3361056161078c565b6001600160a01b0316816001600160a01b0316146105a15760405162d1953b60e31b81526001600160a01b03821660048201526024015b60405180910390fd5b816001600160a01b03163b5f036105d6576040516361798f2f60e11b81526001600160a01b0383166004820152602401610598565b6105df8261093c565b5050565b5f80516020611abb83398151915280545f9190600160a01b900460ff1661060a575f610613565b638fb3603760e01b5b91505090565b610625335b5f3661099c565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805460029190600160401b900460ff168061066f5750805467ffffffffffffffff808416911610155b1561068d5760405163f92ee8a960e01b815260040160405180910390fd5b805468ffffffffffffffffff191667ffffffffffffffff831617600160401b1781556001600160a01b0383166106d657604051630c59659760e31b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b038516179055600186905560028590556003849055805460ff60401b1916815560405167ffffffffffffffff831681527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906020015b60405180910390a1505050505050565b6107593361061e565b6003546040518291907f792ab2554bf1289b3eef409b266807d65198c165cf023652066229da587dd080905f90a3600355565b5f80516020611abb833981519152546001600160a01b031690565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156107ec5750825b90505f8267ffffffffffffffff1660011480156108085750303b155b905081158015610816575080155b156108345760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561085e57845460ff60401b1916600160401b1785555b6001600160a01b03861661088557604051630c59659760e31b815260040160405180910390fd5b61088e86610a92565b83156108d057845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602001610740565b505050505050565b5f838511156108e8575080610933565b5f610910670de0b6b3a76400006108ff898861190f565b610909898961190f565b9190610aa6565b905061092f61091f8583610b66565b8490670de0b6b3a7640000610aa6565b9150505b95945050505050565b5f80516020611abb83398151915280546001600160a01b0383166001600160a01b03199091168117825560408051918252517f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9181900360200190a15050565b5f80516020611abb8339815191525f806109d46109b761078c565b87306109c660045f8a8c61198e565b6109cf916119b5565b610d15565b91509150816108d05763ffffffff811615610a6f57825460ff60a01b1916600160a01b178355610a0261078c565b6001600160a01b03166394c7d7ee8787876040518463ffffffff1660e01b8152600401610a31939291906119e5565b5f604051808303815f87803b158015610a48575f80fd5b505af1158015610a5a573d5f803e3d5ffd5b5050845460ff60a01b19168555506108d09050565b60405162d1953b60e31b81526001600160a01b0387166004820152602401610598565b610a9a610e1d565b610aa381610e68565b50565b5f838302815f1985870982811083820303915050805f03610ada57838281610ad057610ad061195b565b0492505050610b5f565b808411610afa5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b5f815f03610b7d5750670de0b6b3a7640000610d0f565b825f03610b8b57505f610d0f565b600160ff1b8310610bd05760405162461bcd60e51b815260206004820152600f60248201526e78206f7574206f6620626f756e647360881b6044820152606401610598565b82770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328310610c2a5760405162461bcd60e51b815260206004820152600f60248201526e79206f7574206f6620626f756e647360881b6044820152606401610598565b825f670c7d713b49da000083138015610c4a5750670f43fc2c04ee000083125b15610c80575f610c5984610e79565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050610c8e565b81610c8a84610f96565b0290505b670de0b6b3a76400009005680238fd42c5cf03ffff198112801590610cbc575068070c1cc73b00c800008113155b610d005760405162461bcd60e51b815260206004820152601560248201527470726f64756374206f7574206f6620626f756e647360581b6044820152606401610598565b610d098161133b565b93505050505b92915050565b6040516001600160a01b03848116602483015283811660448301526001600160e01b0319831660648301525f9182918291829189169060840160408051601f198184030181529181526020820180516001600160e01b031663b700961360e01b17905251610d839190611a24565b5f60405180830381855afa9150503d805f8114610dbb576040519150601f19603f3d011682016040523d82523d5f602084013e610dc0565b606091505b50915091508115610e12576040815110610df25780806020019051810190610de89190611a64565b9094509250610e12565b6020815110610e125780806020019051810190610e0f9190611aa1565b93505b505094509492505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610e6657604051631afcd79f60e31b815260040160405180910390fd5b565b610e70610e1d565b610aa38161093c565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281610eb957610eb961195b565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a7640000821215610fd557610fcd826a0c097ce7bc90715b34b9f160241b81610fc757610fc761195b565b05610f96565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261102557770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261105d576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126110a5576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126110e0576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261111757693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261114e57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126111835768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126111ae57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126111e3576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312611218576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261124c576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611280576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816112a8576112a861195b565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b5f680238fd42c5cf03ffff19821215801561135f575068070c1cc73b00c800008213155b61139e5760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610598565b5f8212156113d4576113b1825f0361133b565b6a0c097ce7bc90715b34b9f160241b816113cd576113cd61195b565b0592915050565b5f6806f05b59d3b2000000831261141357506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000611449565b6803782dace9d9000000831261144557506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380611449565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126114995768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d63100000084126114d5576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261150f57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412611549576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261158257680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126115bb5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126115f4576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261162d5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6001600160a01b0381168114610aa3575f80fd5b5f60208284031215611772575f80fd5b8135610b5f8161174e565b5f805f8060808587031215611790575f80fd5b84359350602085013592506040850135915060608501356117b08161174e565b939692955090935050565b5f602082840312156117cb575f80fd5b5035919050565b5f602082840312156117e2575f80fd5b8151610b5f8161174e565b5f602082840312156117fd575f80fd5b815160ff81168114610b5f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b600181815b8085111561185b57815f19048211156118415761184161180d565b8085161561184e57918102915b93841c9390800290611826565b509250929050565b5f8261187157506001610d0f565b8161187d57505f610d0f565b8160018114611893576002811461189d576118b9565b6001915050610d0f565b60ff8411156118ae576118ae61180d565b50506001821b610d0f565b5060208310610133831016604e8410600b84101617156118dc575081810a610d0f565b6118e68383611821565b805f19048211156118f9576118f961180d565b029392505050565b5f610b5f60ff841683611863565b81810381811115610d0f57610d0f61180d565b5f610b5f8383611863565b5f6020828403121561193d575f80fd5b5051919050565b8082028115828204841417610d0f57610d0f61180d565b634e487b7160e01b5f52601260045260245ffd5b5f8261198957634e487b7160e01b5f52601260045260245ffd5b500490565b5f808585111561199c575f80fd5b838611156119a8575f80fd5b5050820193919092039150565b6001600160e01b031981358181169160048510156119dd5780818660040360031b1b83161692505b505092915050565b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f82515f5b81811015611a435760208186018101518583015201611a29565b505f920191825250919050565b80518015158114611a5f575f80fd5b919050565b5f8060408385031215611a75575f80fd5b611a7e83611a50565b9150602083015163ffffffff81168114611a96575f80fd5b809150509250929050565b5f60208284031215611ab1575f80fd5b610b5f82611a5056fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a264697066735822122049822f8cbe19ee2e8b43b57fe7369e25dc64fa149405b6e58e3c263f17def12e64736f6c63430008140033
Deployed Bytecode
0x608060405234801561000f575f80fd5b50600436106100a6575f3560e01c80639f4ba0ee1161006e5780639f4ba0ee14610112578063bf7e214f14610125578063c4d66de814610145578063c828371e14610158578063d568499c14610160578063f61c266b14610170575f80fd5b806306f660ef146100aa5780633fa4f245146100c15780637a9e5e4b146100c95780638fb36037146100de57806395eeb400146100ff575b5f80fd5b6003545b6040519081526020015b60405180910390f35b6100ae610178565b6100dc6100d7366004611762565b610558565b005b6100e66105e3565b6040516001600160e01b031990911681526020016100b8565b6100dc61010d36600461177d565b610619565b6100dc6101203660046117bb565b610750565b61012d61078c565b6040516001600160a01b0390911681526020016100b8565b6100dc610153366004611762565b6107a7565b6001546100ae565b5f546001600160a01b031661012d565b6002546100ae565b5f80546001600160a01b03166101a157604051630537d15b60e41b815260040160405180910390fd5b5f805460405163c661065760e01b8152600160048201526001600160a01b039091169063c661065790602401602060405180830381865afa1580156101e8573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061020c91906117d2565b5f805460405163c661065760e01b81526004810183905292935090916001600160a01b039091169063c661065790602401602060405180830381865afa158015610258573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061027c91906117d2565b90505f816001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102bb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102df91906117d2565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561031e573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061034291906117ed565b90505f826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa158015610381573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103a591906117ed565b90505f6103b383600a611901565b90505f6103c183600a611901565b90505f6103d260ff8516601261190f565b6103dd90600a611922565b604051631dc7f52160e01b8152600481018590526001600160a01b038a1690631dc7f52190602401602060405180830381865afa158015610420573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610444919061192d565b61044e9190611944565b60405163266d6a8360e11b8152600481018590529091505f906001600160a01b03891690634cdad50690602401602060405180830381865afa158015610496573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104ba919061192d565b6040516303d1689d60e11b8152600481018690526001600160a01b038a16906307a2d13a90602401602060405180830381865afa1580156104fd573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610521919061192d565b61052b9084611944565b610535919061196f565b905061054a60015442600254600354856108d8565b995050505050505050505090565b3361056161078c565b6001600160a01b0316816001600160a01b0316146105a15760405162d1953b60e31b81526001600160a01b03821660048201526024015b60405180910390fd5b816001600160a01b03163b5f036105d6576040516361798f2f60e11b81526001600160a01b0383166004820152602401610598565b6105df8261093c565b5050565b5f80516020611abb83398151915280545f9190600160a01b900460ff1661060a575f610613565b638fb3603760e01b5b91505090565b610625335b5f3661099c565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805460029190600160401b900460ff168061066f5750805467ffffffffffffffff808416911610155b1561068d5760405163f92ee8a960e01b815260040160405180910390fd5b805468ffffffffffffffffff191667ffffffffffffffff831617600160401b1781556001600160a01b0383166106d657604051630c59659760e31b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b038516179055600186905560028590556003849055805460ff60401b1916815560405167ffffffffffffffff831681527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2906020015b60405180910390a1505050505050565b6107593361061e565b6003546040518291907f792ab2554bf1289b3eef409b266807d65198c165cf023652066229da587dd080905f90a3600355565b5f80516020611abb833981519152546001600160a01b031690565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156107ec5750825b90505f8267ffffffffffffffff1660011480156108085750303b155b905081158015610816575080155b156108345760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561085e57845460ff60401b1916600160401b1785555b6001600160a01b03861661088557604051630c59659760e31b815260040160405180910390fd5b61088e86610a92565b83156108d057845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602001610740565b505050505050565b5f838511156108e8575080610933565b5f610910670de0b6b3a76400006108ff898861190f565b610909898961190f565b9190610aa6565b905061092f61091f8583610b66565b8490670de0b6b3a7640000610aa6565b9150505b95945050505050565b5f80516020611abb83398151915280546001600160a01b0383166001600160a01b03199091168117825560408051918252517f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad9181900360200190a15050565b5f80516020611abb8339815191525f806109d46109b761078c565b87306109c660045f8a8c61198e565b6109cf916119b5565b610d15565b91509150816108d05763ffffffff811615610a6f57825460ff60a01b1916600160a01b178355610a0261078c565b6001600160a01b03166394c7d7ee8787876040518463ffffffff1660e01b8152600401610a31939291906119e5565b5f604051808303815f87803b158015610a48575f80fd5b505af1158015610a5a573d5f803e3d5ffd5b5050845460ff60a01b19168555506108d09050565b60405162d1953b60e31b81526001600160a01b0387166004820152602401610598565b610a9a610e1d565b610aa381610e68565b50565b5f838302815f1985870982811083820303915050805f03610ada57838281610ad057610ad061195b565b0492505050610b5f565b808411610afa5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150505b9392505050565b5f815f03610b7d5750670de0b6b3a7640000610d0f565b825f03610b8b57505f610d0f565b600160ff1b8310610bd05760405162461bcd60e51b815260206004820152600f60248201526e78206f7574206f6620626f756e647360881b6044820152606401610598565b82770bce5086492111aea88f4bb1ca6bcf584181ea8059f765328310610c2a5760405162461bcd60e51b815260206004820152600f60248201526e79206f7574206f6620626f756e647360881b6044820152606401610598565b825f670c7d713b49da000083138015610c4a5750670f43fc2c04ee000083125b15610c80575f610c5984610e79565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050610c8e565b81610c8a84610f96565b0290505b670de0b6b3a76400009005680238fd42c5cf03ffff198112801590610cbc575068070c1cc73b00c800008113155b610d005760405162461bcd60e51b815260206004820152601560248201527470726f64756374206f7574206f6620626f756e647360581b6044820152606401610598565b610d098161133b565b93505050505b92915050565b6040516001600160a01b03848116602483015283811660448301526001600160e01b0319831660648301525f9182918291829189169060840160408051601f198184030181529181526020820180516001600160e01b031663b700961360e01b17905251610d839190611a24565b5f60405180830381855afa9150503d805f8114610dbb576040519150601f19603f3d011682016040523d82523d5f602084013e610dc0565b606091505b50915091508115610e12576040815110610df25780806020019051810190610de89190611a64565b9094509250610e12565b6020815110610e125780806020019051810190610e0f9190611aa1565b93505b505094509492505050565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610e6657604051631afcd79f60e31b815260040160405180910390fd5b565b610e70610e1d565b610aa38161093c565b670de0b6b3a7640000025f806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281610eb957610eb961195b565b0590505f6a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f82050160020295945050505050565b5f670de0b6b3a7640000821215610fd557610fcd826a0c097ce7bc90715b34b9f160241b81610fc757610fc761195b565b05610f96565b5f0392915050565b5f7e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261102557770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e000000831261105d576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126110a5576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a70083126110e0576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf850831261111757693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e2831261114e57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d0383126111835768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb4174612111083126111ae57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d83126111e3576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312611218576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b286603831261124c576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312611280576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b5f68056bc75e2d63100000840168056bc75e2d6310000080860302816112a8576112a861195b565b0590505f68056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b5f680238fd42c5cf03ffff19821215801561135f575068070c1cc73b00c800008213155b61139e5760405162461bcd60e51b815260206004820152601060248201526f125b9d985b1a5908195e1c1bdb995b9d60821b6044820152606401610598565b5f8212156113d4576113b1825f0361133b565b6a0c097ce7bc90715b34b9f160241b816113cd576113cd61195b565b0592915050565b5f6806f05b59d3b2000000831261141357506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000611449565b6803782dace9d9000000831261144557506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380611449565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac6200000084126114995768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d63100000084126114d5576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b18800000841261150f57682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412611549576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261158257680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d6310000084126115bb5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126115f4576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261162d5768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b6001600160a01b0381168114610aa3575f80fd5b5f60208284031215611772575f80fd5b8135610b5f8161174e565b5f805f8060808587031215611790575f80fd5b84359350602085013592506040850135915060608501356117b08161174e565b939692955090935050565b5f602082840312156117cb575f80fd5b5035919050565b5f602082840312156117e2575f80fd5b8151610b5f8161174e565b5f602082840312156117fd575f80fd5b815160ff81168114610b5f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b600181815b8085111561185b57815f19048211156118415761184161180d565b8085161561184e57918102915b93841c9390800290611826565b509250929050565b5f8261187157506001610d0f565b8161187d57505f610d0f565b8160018114611893576002811461189d576118b9565b6001915050610d0f565b60ff8411156118ae576118ae61180d565b50506001821b610d0f565b5060208310610133831016604e8410600b84101617156118dc575081810a610d0f565b6118e68383611821565b805f19048211156118f9576118f961180d565b029392505050565b5f610b5f60ff841683611863565b81810381811115610d0f57610d0f61180d565b5f610b5f8383611863565b5f6020828403121561193d575f80fd5b5051919050565b8082028115828204841417610d0f57610d0f61180d565b634e487b7160e01b5f52601260045260245ffd5b5f8261198957634e487b7160e01b5f52601260045260245ffd5b500490565b5f808585111561199c575f80fd5b838611156119a8575f80fd5b5050820193919092039150565b6001600160e01b031981358181169160048510156119dd5780818660040360031b1b83161692505b505092915050565b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f82515f5b81811015611a435760208186018101518583015201611a29565b505f920191825250919050565b80518015158114611a5f575f80fd5b919050565b5f8060408385031215611a75575f80fd5b611a7e83611a50565b9150602083015163ffffffff81168114611a96575f80fd5b809150509250929050565b5f60208284031215611ab1575f80fd5b610b5f82611a5056fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a264697066735822122049822f8cbe19ee2e8b43b57fe7369e25dc64fa149405b6e58e3c263f17def12e64736f6c63430008140033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.