ETH Price: $3,961.19 (-0.43%)

Contract

0xFBF44D0341C03098A1D9C0336e3d5C34E8BFdf1A

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Advanced mode:
Parent Transaction Hash Block From To
View All Internal Transactions

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
L2ToL1MessagePasser

Compiler Version
v0.8.15+commit.e14f2714

Optimization Enabled:
Yes with 999999 runs

Other Settings:
london EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { Encoding } from "src/libraries/Encoding.sol";
import { Burn } from "src/libraries/Burn.sol";
import { ISemver } from "src/universal/interfaces/ISemver.sol";

/// @custom:proxied true
/// @custom:predeploy 0x4200000000000000000000000000000000000016
/// @title L2ToL1MessagePasser
/// @notice The L2ToL1MessagePasser is a dedicated contract where messages that are being sent from
///         L2 to L1 can be stored. The storage root of this contract is pulled up to the top level
///         of the L2 output to reduce the cost of proving the existence of sent messages.
contract L2ToL1MessagePasser is ISemver {
    /// @notice The L1 gas limit set when eth is withdrawn using the receive() function.
    uint256 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;

    /// @notice The current message version identifier.
    uint16 public constant MESSAGE_VERSION = 1;

    /// @notice Includes the message hashes for all withdrawals
    mapping(bytes32 => bool) public sentMessages;

    /// @notice A unique value hashed with each withdrawal.
    uint240 internal msgNonce;

    /// @notice Emitted any time a withdrawal is initiated.
    /// @param nonce          Unique value corresponding to each withdrawal.
    /// @param sender         The L2 account address which initiated the withdrawal.
    /// @param target         The L1 account address the call will be send to.
    /// @param value          The ETH value submitted for withdrawal, to be forwarded to the target.
    /// @param gasLimit       The minimum amount of gas that must be provided when withdrawing.
    /// @param data           The data to be forwarded to the target on L1.
    /// @param withdrawalHash The hash of the withdrawal.
    event MessagePassed(
        uint256 indexed nonce,
        address indexed sender,
        address indexed target,
        uint256 value,
        uint256 gasLimit,
        bytes data,
        bytes32 withdrawalHash
    );

    /// @notice Emitted when the balance of this contract is burned.
    /// @param amount Amount of ETh that was burned.
    event WithdrawerBalanceBurnt(uint256 indexed amount);

    /// @custom:semver 1.1.1-beta.1
    string public constant version = "1.1.1-beta.1";

    /// @notice Allows users to withdraw ETH by sending directly to this contract.
    receive() external payable {
        initiateWithdrawal(msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
    }

    /// @notice Removes all ETH held by this contract from the state. Used to prevent the amount of
    ///         ETH on L2 inflating when ETH is withdrawn. Currently only way to do this is to
    ///         create a contract and self-destruct it to itself. Anyone can call this function. Not
    ///         incentivized since this function is very cheap.
    function burn() external {
        uint256 balance = address(this).balance;
        Burn.eth(balance);
        emit WithdrawerBalanceBurnt(balance);
    }

    /// @notice Sends a message from L2 to L1.
    /// @param _target   Address to call on L1 execution.
    /// @param _gasLimit Minimum gas limit for executing the message on L1.
    /// @param _data     Data to forward to L1 target.
    function initiateWithdrawal(address _target, uint256 _gasLimit, bytes memory _data) public payable {
        require(false, "Withdrawals are disabled");

        bytes32 withdrawalHash = Hashing.hashWithdrawal(
            Types.WithdrawalTransaction({
                nonce: messageNonce(),
                sender: msg.sender,
                target: _target,
                value: msg.value,
                gasLimit: _gasLimit,
                data: _data
            })
        );

        sentMessages[withdrawalHash] = true;

        emit MessagePassed(messageNonce(), msg.sender, _target, msg.value, _gasLimit, _data, withdrawalHash);

        unchecked {
            ++msgNonce;
        }
    }

    /// @notice Retrieves the next message nonce. Message version will be added to the upper two
    ///         bytes of the message nonce. Message version allows us to treat messages as having
    ///         different structures.
    /// @return Nonce of the next message to be sent, with added message version.
    function messageNonce() public view returns (uint256) {
        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

/// @title Burn
/// @notice Utilities for burning stuff.
library Burn {
    /// @notice Burns a given amount of ETH.
    /// @param _amount Amount of ETH to burn.
    function eth(uint256 _amount) internal {
        new Burner{ value: _amount }();
    }

    /// @notice Burns a given amount of gas.
    /// @param _amount Amount of gas to burn.
    function gas(uint256 _amount) internal view {
        uint256 i = 0;
        uint256 initialGas = gasleft();
        while (initialGas - gasleft() < _amount) {
            ++i;
        }
    }
}

/// @title Burner
/// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
///         from the circulating supply.
contract Burner {
    constructor() payable {
        selfdestruct(payable(address(this)));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Types } from "src/libraries/Types.sol";
import { Hashing } from "src/libraries/Hashing.sol";
import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";

/// @title Encoding
/// @notice Encoding handles Optimism's various different encoding schemes.
library Encoding {
    /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
    ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
    ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
    /// @param _tx User deposit transaction to encode.
    /// @return RLP encoded L2 deposit transaction.
    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
        bytes[] memory raw = new bytes[](8);
        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
        raw[1] = RLPWriter.writeAddress(_tx.from);
        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
        raw[3] = RLPWriter.writeUint(_tx.mint);
        raw[4] = RLPWriter.writeUint(_tx.value);
        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
        raw[6] = RLPWriter.writeBool(false);
        raw[7] = RLPWriter.writeBytes(_tx.data);
        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
    }

    /// @notice Encodes the cross domain message based on the version that is encoded into the
    ///         message nonce.
    /// @param _nonce    Message nonce with version encoded into the first two bytes.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes memory)
    {
        (, uint16 version) = decodeVersionedNonce(_nonce);
        if (version == 0) {
            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Encoding: unknown cross domain message version");
        }
    }

    /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
    /// @param _target Address of the target of the message.
    /// @param _sender Address of the sender of the message.
    /// @param _data   Data to send with the message.
    /// @param _nonce  Message nonce.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    )
        internal
        pure
        returns (bytes memory)
    {
        // nosemgrep: sol-style-use-abi-encodecall
        return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
    }

    /// @notice Encodes a cross domain message based on the V1 (current) encoding.
    /// @param _nonce    Message nonce.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Encoded cross domain message.
    function encodeCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes memory)
    {
        // nosemgrep: sol-style-use-abi-encodecall
        return abi.encodeWithSignature(
            "relayMessage(uint256,address,address,uint256,uint256,bytes)",
            _nonce,
            _sender,
            _target,
            _value,
            _gasLimit,
            _data
        );
    }

    /// @notice Adds a version number into the first two bytes of a message nonce.
    /// @param _nonce   Message nonce to encode into.
    /// @param _version Version number to encode into the message nonce.
    /// @return Message nonce with version encoded into the first two bytes.
    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
        uint256 nonce;
        assembly {
            nonce := or(shl(240, _version), _nonce)
        }
        return nonce;
    }

    /// @notice Pulls the version out of a version-encoded nonce.
    /// @param _nonce Message nonce with version encoded into the first two bytes.
    /// @return Nonce without encoded version.
    /// @return Version of the message.
    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
        uint240 nonce;
        uint16 version;
        assembly {
            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            version := shr(240, _nonce)
        }
        return (nonce, version);
    }

    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
    /// @param _baseFeeScalar       L1 base fee Scalar
    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
    /// @param _timestamp           L1 timestamp.
    /// @param _number              L1 blocknumber.
    /// @param _baseFee             L1 base fee.
    /// @param _blobBaseFee         L1 blob base fee.
    /// @param _hash                L1 blockhash.
    /// @param _batcherHash         Versioned hash to authenticate batcher by.
    function encodeSetL1BlockValuesEcotone(
        uint32 _baseFeeScalar,
        uint32 _blobBaseFeeScalar,
        uint64 _sequenceNumber,
        uint64 _timestamp,
        uint64 _number,
        uint256 _baseFee,
        uint256 _blobBaseFee,
        bytes32 _hash,
        bytes32 _batcherHash
    )
        internal
        pure
        returns (bytes memory)
    {
        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
        return abi.encodePacked(
            functionSignature,
            _baseFeeScalar,
            _blobBaseFeeScalar,
            _sequenceNumber,
            _timestamp,
            _number,
            _baseFee,
            _blobBaseFee,
            _hash,
            _batcherHash
        );
    }

    /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
    /// @param _baseFeeScalar       L1 base fee Scalar
    /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
    /// @param _sequenceNumber      Number of L2 blocks since epoch start.
    /// @param _timestamp           L1 timestamp.
    /// @param _number              L1 blocknumber.
    /// @param _baseFee             L1 base fee.
    /// @param _blobBaseFee         L1 blob base fee.
    /// @param _hash                L1 blockhash.
    /// @param _batcherHash         Versioned hash to authenticate batcher by.
    function encodeSetL1BlockValuesInterop(
        uint32 _baseFeeScalar,
        uint32 _blobBaseFeeScalar,
        uint64 _sequenceNumber,
        uint64 _timestamp,
        uint64 _number,
        uint256 _baseFee,
        uint256 _blobBaseFee,
        bytes32 _hash,
        bytes32 _batcherHash
    )
        internal
        pure
        returns (bytes memory)
    {
        bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
        return abi.encodePacked(
            functionSignature,
            _baseFeeScalar,
            _blobBaseFeeScalar,
            _sequenceNumber,
            _timestamp,
            _number,
            _baseFee,
            _blobBaseFee,
            _hash,
            _batcherHash
        );
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Types } from "src/libraries/Types.sol";
import { Encoding } from "src/libraries/Encoding.sol";

/// @title Hashing
/// @notice Hashing handles Optimism's various different hashing schemes.
library Hashing {
    /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
    ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
    ///         system.
    /// @param _tx User deposit transaction to hash.
    /// @return Hash of the RLP encoded L2 deposit transaction.
    function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
        return keccak256(Encoding.encodeDepositTransaction(_tx));
    }

    /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
    ///         of the L2 transaction that corresponds to a deposit is unique and is
    ///         deterministically generated from L1 transaction data.
    /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
    /// @param _logIndex    The index of the log that created the deposit transaction.
    /// @return Hash of the deposit transaction's "source hash".
    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
        return keccak256(abi.encode(bytes32(0), depositId));
    }

    /// @notice Hashes the cross domain message based on the version that is encoded into the
    ///         message nonce.
    /// @param _nonce    Message nonce with version encoded into the first two bytes.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes32)
    {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        if (version == 0) {
            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Hashing: unknown cross domain message version");
        }
    }

    /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
    /// @param _target Address of the target of the message.
    /// @param _sender Address of the sender of the message.
    /// @param _data   Data to send with the message.
    /// @param _nonce  Message nonce.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    )
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
    }

    /// @notice Hashes a cross domain message based on the V1 (current) encoding.
    /// @param _nonce    Message nonce.
    /// @param _sender   Address of the sender of the message.
    /// @param _target   Address of the target of the message.
    /// @param _value    ETH value to send to the target.
    /// @param _gasLimit Gas limit to use for the message.
    /// @param _data     Data to send with the message.
    /// @return Hashed cross domain message.
    function hashCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    )
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
    }

    /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
    /// @param _tx Withdrawal transaction to hash.
    /// @return Hashed withdrawal transaction.
    function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
        return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
    }

    /// @notice Hashes the various elements of an output root proof into an output root hash which
    ///         can be used to check if the proof is valid.
    /// @param _outputRootProof Output root proof which should hash to an output root.
    /// @return Hashed output root proof.
    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
        return keccak256(
            abi.encode(
                _outputRootProof.version,
                _outputRootProof.stateRoot,
                _outputRootProof.messagePasserStorageRoot,
                _outputRootProof.latestBlockhash
            )
        );
    }

    /// @notice Generates a unique hash for cross l2 messages. This hash is used to identify
    ///         the message and ensure it is not relayed more than once.
    /// @param _destination Chain ID of the destination chain.
    /// @param _source Chain ID of the source chain.
    /// @param _nonce Unique nonce associated with the message to prevent replay attacks.
    /// @param _sender Address of the user who originally sent the message.
    /// @param _target Address of the contract or wallet that the message is targeting on the destination chain.
    /// @param _message The message payload to be relayed to the target on the destination chain.
    /// @return Hash of the encoded message parameters, used to uniquely identify the message.
    function hashL2toL2CrossDomainMessage(
        uint256 _destination,
        uint256 _source,
        uint256 _nonce,
        address _sender,
        address _target,
        bytes memory _message
    )
        internal
        pure
        returns (bytes32)
    {
        return keccak256(abi.encode(_destination, _source, _nonce, _sender, _target, _message));
    }
}

File 5 of 7 : Types.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Types
/// @notice Contains various types used throughout the Optimism contract system.
library Types {
    /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
    ///         timestamp that the output root is posted. This timestamp is used to verify that the
    ///         finalization period has passed since the output root was submitted.
    /// @custom:field outputRoot    Hash of the L2 output.
    /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
    /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
    struct OutputProposal {
        bytes32 outputRoot;
        uint128 timestamp;
        uint128 l2BlockNumber;
    }

    /// @notice Struct representing the elements that are hashed together to generate an output root
    ///         which itself represents a snapshot of the L2 state.
    /// @custom:field version                  Version of the output root.
    /// @custom:field stateRoot                Root of the state trie at the block of this output.
    /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
    /// @custom:field latestBlockhash          Hash of the block this output was generated from.
    struct OutputRootProof {
        bytes32 version;
        bytes32 stateRoot;
        bytes32 messagePasserStorageRoot;
        bytes32 latestBlockhash;
    }

    /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
    ///         user (as opposed to a system deposit transaction generated by the system).
    /// @custom:field from        Address of the sender of the transaction.
    /// @custom:field to          Address of the recipient of the transaction.
    /// @custom:field isCreation  True if the transaction is a contract creation.
    /// @custom:field value       Value to send to the recipient.
    /// @custom:field mint        Amount of ETH to mint.
    /// @custom:field gasLimit    Gas limit of the transaction.
    /// @custom:field data        Data of the transaction.
    /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
    /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
    struct UserDepositTransaction {
        address from;
        address to;
        bool isCreation;
        uint256 value;
        uint256 mint;
        uint64 gasLimit;
        bytes data;
        bytes32 l1BlockHash;
        uint256 logIndex;
    }

    /// @notice Struct representing a withdrawal transaction.
    /// @custom:field nonce    Nonce of the withdrawal transaction
    /// @custom:field sender   Address of the sender of the transaction.
    /// @custom:field target   Address of the recipient of the transaction.
    /// @custom:field value    Value to send to the recipient.
    /// @custom:field gasLimit Gas limit of the transaction.
    /// @custom:field data     Data of the transaction.
    struct WithdrawalTransaction {
        uint256 nonce;
        address sender;
        address target;
        uint256 value;
        uint256 gasLimit;
        bytes data;
    }

    /// @notice Enum representing where the FeeVault withdraws funds to.
    /// @custom:value L1 FeeVault withdraws funds to L1.
    /// @custom:value L2 FeeVault withdraws funds to L2.
    enum WithdrawalNetwork {
        L1,
        L2
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
/// @title RLPWriter
/// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
///         modifications to improve legibility.
library RLPWriter {
    /// @notice RLP encodes a byte string.
    /// @param _in The byte string to encode.
    /// @return out_ The RLP encoded string in bytes.
    function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
        if (_in.length == 1 && uint8(_in[0]) < 128) {
            out_ = _in;
        } else {
            out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
        }
    }

    /// @notice RLP encodes a list of RLP encoded byte byte strings.
    /// @param _in The list of RLP encoded byte strings.
    /// @return list_ The RLP encoded list of items in bytes.
    function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
        list_ = _flatten(_in);
        list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
    }

    /// @notice RLP encodes a string.
    /// @param _in The string to encode.
    /// @return out_ The RLP encoded string in bytes.
    function writeString(string memory _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(bytes(_in));
    }

    /// @notice RLP encodes an address.
    /// @param _in The address to encode.
    /// @return out_ The RLP encoded address in bytes.
    function writeAddress(address _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(abi.encodePacked(_in));
    }

    /// @notice RLP encodes a uint.
    /// @param _in The uint256 to encode.
    /// @return out_ The RLP encoded uint256 in bytes.
    function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
        out_ = writeBytes(_toBinary(_in));
    }

    /// @notice RLP encodes a bool.
    /// @param _in The bool to encode.
    /// @return out_ The RLP encoded bool in bytes.
    function writeBool(bool _in) internal pure returns (bytes memory out_) {
        out_ = new bytes(1);
        out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
    }

    /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
    /// @param _len    The length of the string or the payload.
    /// @param _offset 128 if item is string, 192 if item is list.
    /// @return out_ RLP encoded bytes.
    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
        if (_len < 56) {
            out_ = new bytes(1);
            out_[0] = bytes1(uint8(_len) + uint8(_offset));
        } else {
            uint256 lenLen;
            uint256 i = 1;
            while (_len / i != 0) {
                lenLen++;
                i *= 256;
            }

            out_ = new bytes(lenLen + 1);
            out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
            for (i = 1; i <= lenLen; i++) {
                out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
            }
        }
    }

    /// @notice Encode integer in big endian binary form with no leading zeroes.
    /// @param _x The integer to encode.
    /// @return out_ RLP encoded bytes.
    function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
        bytes memory b = abi.encodePacked(_x);

        uint256 i = 0;
        for (; i < 32; i++) {
            if (b[i] != 0) {
                break;
            }
        }

        out_ = new bytes(32 - i);
        for (uint256 j = 0; j < out_.length; j++) {
            out_[j] = b[i++];
        }
    }

    /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
    /// @notice Copies a piece of memory to another location.
    /// @param _dest Destination location.
    /// @param _src  Source location.
    /// @param _len  Length of memory to copy.
    function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
        uint256 dest = _dest;
        uint256 src = _src;
        uint256 len = _len;

        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        uint256 mask;
        unchecked {
            mask = 256 ** (32 - len) - 1;
        }
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
    /// @notice Flattens a list of byte strings into one byte string.
    /// @param _list List of byte strings to flatten.
    /// @return out_ The flattened byte string.
    function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
        if (_list.length == 0) {
            return new bytes(0);
        }

        uint256 len;
        uint256 i = 0;
        for (; i < _list.length; i++) {
            len += _list[i].length;
        }

        out_ = new bytes(len);
        uint256 flattenedPtr;
        assembly {
            flattenedPtr := add(out_, 0x20)
        }

        for (i = 0; i < _list.length; i++) {
            bytes memory item = _list[i];

            uint256 listPtr;
            assembly {
                listPtr := add(item, 0x20)
            }

            _memcpy(flattenedPtr, listPtr, item.length);
            flattenedPtr += _list[i].length;
        }
    }
}

File 7 of 7 : ISemver.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title ISemver
/// @notice ISemver is a simple contract for ensuring that contracts are
///         versioned using semantic versioning.
interface ISemver {
    /// @notice Getter for the semantic version of the contract. This is not
    ///         meant to be used onchain but instead meant to be used by offchain
    ///         tooling.
    /// @return Semver contract version as a string.
    function version() external view returns (string memory);
}

Settings
{
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "none",
    "useLiteralContent": false
  },
  "optimizer": {
    "enabled": true,
    "runs": 999999
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-v5/=lib/openzeppelin-contracts-v5/contracts/",
    "@rari-capital/solmate/=lib/solmate/",
    "@lib-keccak/=lib/lib-keccak/contracts/lib/",
    "@solady/=lib/solady/src/",
    "@solady-v0.0.245/=lib/solady-v0.0.245/src/",
    "forge-std/=lib/forge-std/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "safe-contracts/=lib/safe-contracts/contracts/",
    "kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/",
    "gelato/=lib/automate/contracts/",
    "@solady-test/=lib/lib-keccak/lib/solady/test/",
    "automate/=lib/automate/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts-v5/lib/erc4626-tests/",
    "hardhat/=lib/automate/node_modules/hardhat/",
    "lib-keccak/=lib/lib-keccak/contracts/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts-v5/=lib/openzeppelin-contracts-v5/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "prb-test/=lib/automate/lib/prb-test/src/",
    "prb/-est/=lib/automate/lib/prb-test/src/",
    "solady-v0.0.245/=lib/solady-v0.0.245/src/",
    "solady/=lib/solady/",
    "solmate/=lib/solmate/src/"
  ],
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"gasLimit","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"},{"indexed":false,"internalType":"bytes32","name":"withdrawalHash","type":"bytes32"}],"name":"MessagePassed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WithdrawerBalanceBurnt","type":"event"},{"inputs":[],"name":"MESSAGE_VERSION","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"uint256","name":"_gasLimit","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"initiateWithdrawal","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"messageNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"sentMessages","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

608060405234801561001057600080fd5b506104a1806100206000396000f3fe6080604052600436106100695760003560e01c806382e3702d1161004357806382e3702d1461012a578063c2b3e5ac1461016a578063ecc704281461017d57600080fd5b80633f827a5a1461009257806344df8e70146100bf57806354fd4d50146100d457600080fd5b3661008d5761008b33620186a0604051806020016040528060008152506101e2565b005b600080fd5b34801561009e57600080fd5b506100a7600181565b60405161ffff90911681526020015b60405180910390f35b3480156100cb57600080fd5b5061008b610248565b3480156100e057600080fd5b5061011d6040518060400160405280600c81526020017f312e312e312d626574612e31000000000000000000000000000000000000000081525081565b6040516100b69190610326565b34801561013657600080fd5b5061015a610145366004610340565b60006020819052908152604090205460ff1681565b60405190151581526020016100b6565b61008b610178366004610388565b6101e2565b34801561018957600080fd5b506101d46001547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b6040519081526020016100b6565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f5769746864726177616c73206172652064697361626c65640000000000000000604482015260640160405180910390fd5b4761025281610280565b60405181907f7967de617a5ac1cc7eba2d6f37570a0135afa950d8bb77cdd35f0d0b4e85a16f90600090a250565b8060405161028d906102af565b6040518091039082f09050801580156102aa573d6000803e3d6000fd5b505050565b60088061048d83390190565b6000815180845260005b818110156102e1576020818501810151868301820152016102c5565b818111156102f3576000602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061033960208301846102bb565b9392505050565b60006020828403121561035257600080fd5b5035919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b60008060006060848603121561039d57600080fd5b833573ffffffffffffffffffffffffffffffffffffffff811681146103c157600080fd5b925060208401359150604084013567ffffffffffffffff808211156103e557600080fd5b818601915086601f8301126103f957600080fd5b81358181111561040b5761040b610359565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561045157610451610359565b8160405282815289602084870101111561046a57600080fd5b826020860160208301376000602084830101528095505050505050925092509256fe608060405230fffea164736f6c634300080f000a

Deployed Bytecode

0x6080604052600436106100695760003560e01c806382e3702d1161004357806382e3702d1461012a578063c2b3e5ac1461016a578063ecc704281461017d57600080fd5b80633f827a5a1461009257806344df8e70146100bf57806354fd4d50146100d457600080fd5b3661008d5761008b33620186a0604051806020016040528060008152506101e2565b005b600080fd5b34801561009e57600080fd5b506100a7600181565b60405161ffff90911681526020015b60405180910390f35b3480156100cb57600080fd5b5061008b610248565b3480156100e057600080fd5b5061011d6040518060400160405280600c81526020017f312e312e312d626574612e31000000000000000000000000000000000000000081525081565b6040516100b69190610326565b34801561013657600080fd5b5061015a610145366004610340565b60006020819052908152604090205460ff1681565b60405190151581526020016100b6565b61008b610178366004610388565b6101e2565b34801561018957600080fd5b506101d46001547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b6040519081526020016100b6565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f5769746864726177616c73206172652064697361626c65640000000000000000604482015260640160405180910390fd5b4761025281610280565b60405181907f7967de617a5ac1cc7eba2d6f37570a0135afa950d8bb77cdd35f0d0b4e85a16f90600090a250565b8060405161028d906102af565b6040518091039082f09050801580156102aa573d6000803e3d6000fd5b505050565b60088061048d83390190565b6000815180845260005b818110156102e1576020818501810151868301820152016102c5565b818111156102f3576000602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b60208152600061033960208301846102bb565b9392505050565b60006020828403121561035257600080fd5b5035919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b60008060006060848603121561039d57600080fd5b833573ffffffffffffffffffffffffffffffffffffffff811681146103c157600080fd5b925060208401359150604084013567ffffffffffffffff808211156103e557600080fd5b818601915086601f8301126103f957600080fd5b81358181111561040b5761040b610359565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561045157610451610359565b8160405282815289602084870101111561046a57600080fd5b826020860160208301376000602084830101528095505050505050925092509256fe608060405230fffea164736f6c634300080f000a

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0xFBF44D0341C03098A1D9C0336e3d5C34E8BFdf1A
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.