ETH Price: $4,333.53 (+5.69%)

Token

Test Meme (TME)

Overview

Max Total Supply

974,480,607.007583536469268155 TME

Holders

4

Total Transfers

-

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
MemeTokenV3

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
Yes with 200 runs

Other Settings:
prague EvmVersion, None license
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";

import {INonfungiblePositionManager} from "./interfaces/INonfungiblePositionManager.sol";
import {IUniswapV3Factory} from "./interfaces/IUniswapV3Factory.sol";
import {IMemeTokenV3} from "./interfaces/IMemeTokenV3.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

contract MemeTokenV3 is ERC20Burnable, IMemeTokenV3, ReentrancyGuard {
    CurveType public constant curveType = CurveType.ConstantProductV1;

    error InvalidMarketCapTarget();
    error PoolAlreadyExists();

    uint256 public initialTokenSupply;
    uint256 public virtualTokenReserves;
    uint256 public virtualCollateralReserves;
    uint256 public immutable virtualCollateralReservesInitial;

    uint256 public immutable feeBPS;
    uint256 public immutable dexFeeBPS;

    uint256 public immutable mcLowerLimit;
    uint256 public immutable mcUpperLimit;
    uint256 public immutable tokensMigrationThreshold;

    uint256 public immutable fixedMigrationFee;
    uint256 public immutable poolCreationFee;

    address public immutable creator;
    address public pair; // uniswap v3 pool address after migration
    address public immutable treasury;
    address public immutable dexTreasury;
    address public immutable factory;
    uint256 public positionTokenId;

    // Address to receive collected Uniswap V3 LP fees (token + WETH)
    address public lpFeeReceiver;

    bool public tradingStopped;
    bool public sendingToPairNotAllowed = true;

    // Snapshot of token balance when trading stopped (prevents donation attacks)
    uint256 private _migrationTokenBalance;

    uint256 public constant MULTIPLIER = 10_000;

    INonfungiblePositionManager public immutable positionManager;
    address public immutable WETH9;
    uint24 public immutable poolFee;

    int24 internal constant MIN_TICK = -887220;
    int24 internal constant MAX_TICK = 887220;

    // Uniswap V3 pool init code hash used to deterministically compute pool address
    // Source: @uniswap/v3-periphery/contracts/libraries/PoolAddress.sol
    bytes32 internal constant UNISWAP_V3_POOL_INIT_CODE_HASH =
        0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;

    modifier buyChecks() {
        if (tradingStopped) revert TradingStopped();
        _;
        _checkMcLower();
        _checkMcUpperLimit();
    }

    modifier sellChecks() {
        if (tradingStopped) revert TradingStopped();
        _;
    }

    modifier onlyFactory() {
        if (msg.sender != factory) revert OnlyFactory();
        _;
    }

    constructor(ConstructorParams memory _params) ERC20(_params.name, _params.symbol) {
        _mint(address(this), _params.totalSupply);

        initialTokenSupply = _params.totalSupply;
        virtualCollateralReserves = _params.virtualCollateralReserves;
        virtualCollateralReservesInitial = _params.virtualCollateralReserves;
        virtualTokenReserves = _params.virtualTokenReserves;

        creator = _params.creator;

        feeBPS = _params.feeBasisPoints;
        dexFeeBPS = _params.dexFeeBasisPoints;

        treasury = _params.treasury;
        dexTreasury = _params.dexTreasury;

        fixedMigrationFee = _params.migrationFeeFixed;
        poolCreationFee = _params.poolCreationFee;

        mcLowerLimit = _params.mcLowerLimit;
        mcUpperLimit = _params.mcUpperLimit;
        tokensMigrationThreshold = _params.tokensMigrationThreshold;

        positionManager = INonfungiblePositionManager(_params.positionManager);
        WETH9 = INonfungiblePositionManager(_params.positionManager).WETH9();
        poolFee = _params.poolFee;

        factory = msg.sender;

        // Set LP fee receiver from params
        lpFeeReceiver = _params.lpFeeReceiver;

        // Create and initialize the Uniswap V3 pool immediately to pin the initial price
        (address token0, address token1) = address(this) < WETH9 ? (address(this), WETH9) : (WETH9, address(this));
        // Estimate reserves at migration threshold (when mc = mcLowerLimit) by solving:
        // 1) vtAtMcLower * vcAtMcLower = vt0 * vc0 (constant product invariant)
        // 2) mcLowerLimit = (vcAtMcLower * initialTokenSupply) / vtAtMcLower
        uint256 vt0 = virtualTokenReserves;
        uint256 vc0 = virtualCollateralReserves;
        uint256 migrationThreshold = _params.tokensMigrationThreshold;
        (uint256 vtAtMcLower, uint256 vcAtMcLower) = _reservesAfterTokensSold(vt0, vc0, migrationThreshold);

        uint160 sqrtPriceX96Init = _getSqrtPriceX96(vtAtMcLower, vcAtMcLower, token0 == address(this));
        pair = _initOrValidatePool(token0, token1, sqrtPriceX96Init);
    }

    function _reservesAfterTokensSold(uint256 vt0, uint256 vc0, uint256 tokensSold)
        internal
        pure
        returns (uint256 vtAtMcLower, uint256 vcAtMcLower)
    {
        if (tokensSold == 0 || tokensSold >= vt0) revert InvalidMarketCapTarget();
        vtAtMcLower = vt0 - tokensSold;
        if (vtAtMcLower == 0) revert InvalidMarketCapTarget();
        uint256 product = Math.mulDiv(vt0, vc0, 1);
        vcAtMcLower = product / vtAtMcLower;
    }

    function buyExactIn(uint256 _amountOutMin)
        external
        payable
        onlyFactory
        buyChecks
        returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee)
    {
        if (balanceOf(address(this)) <= _amountOutMin) revert InsufficientTokenReserves();

        collateralToPayWithFee = msg.value;
        uint256 collateralToSpendMinusFee;
        (collateralToSpendMinusFee, helioFee, dexFee) = _calculateFeeFromTotalAmount(collateralToPayWithFee);

        _transferCollateral(treasury, helioFee);
        _transferCollateral(dexTreasury, dexFee);

        uint256 tokensOut =
            (collateralToSpendMinusFee * virtualTokenReserves) / (virtualCollateralReserves + collateralToSpendMinusFee);

        if (tokensOut < _amountOutMin) revert SlippageCheckFailed();

        virtualTokenReserves -= tokensOut;
        virtualCollateralReserves += collateralToSpendMinusFee;

        _transfer(address(this), msg.sender, tokensOut);
    }

    function sellExactIn(uint256 _tokenAmount, uint256 _amountCollateralMin)
        external
        payable
        onlyFactory
        sellChecks
        returns (uint256 collateralToReceiveMinusFee, uint256 helioFee, uint256 dexFee)
    {
        uint256 collateralToReceive =
            (_tokenAmount * virtualCollateralReserves) / (virtualTokenReserves + _tokenAmount);
        (helioFee, dexFee) = _calculateFee(collateralToReceive);
        collateralToReceiveMinusFee = collateralToReceive - helioFee - dexFee;
        _transferCollateral(treasury, helioFee);
        _transferCollateral(dexTreasury, dexFee);

        if (collateralToReceiveMinusFee < _amountCollateralMin) revert SlippageCheckFailed();

        virtualTokenReserves += _tokenAmount;
        virtualCollateralReserves -= collateralToReceive;

        _transferCollateral(msg.sender, collateralToReceiveMinusFee);
        _transfer(msg.sender, address(this), _tokenAmount);
    }

    function getAmountOutAndFee(uint256 _amountIn, uint256 _reserveIn, uint256 _reserveOut, bool _paymentTokenIsIn)
        external
        view
        returns (uint256 amountOut, uint256 fee)
    {
        if (_paymentTokenIsIn) {
            (uint256 amountInWithoutFee, uint256 helioFee, uint256 dexFee) = _calculateFeeFromTotalAmount(_amountIn);
            fee = helioFee + dexFee;

            amountOut = (amountInWithoutFee * _reserveOut) / (_reserveIn + amountInWithoutFee);
        } else {
            amountOut = (_amountIn * _reserveOut) / (_reserveIn + _amountIn);

            (uint256 helioFee, uint256 dexFee) = _calculateFee(amountOut);
            fee = helioFee + dexFee;
            amountOut -= fee;
        }
    }

    function migrate()
        external
        onlyFactory
        returns (uint256 tokensToMigrate, uint256 tokensToBurn, uint256 collateralAmount)
    {
        sendingToPairNotAllowed = false;

        uint256 tokensRemaining = _migrationTokenBalance;
        this.approve(address(positionManager), tokensRemaining);

        tokensToMigrate = tokensRemaining;
        tokensToBurn = tokensRemaining - tokensToMigrate;

        (uint256 treasuryFee, uint256 dexFee) = _splitFee(fixedMigrationFee);
        _transferCollateral(treasury, treasuryFee + poolCreationFee);
        _transferCollateral(dexTreasury, dexFee);

        _burn(address(this), tokensToBurn);

        collateralAmount =
            virtualCollateralReserves - virtualCollateralReservesInitial - treasuryFee - dexFee - poolCreationFee;

        // Determine token ordering
        (address token0, address token1) = address(this) < WETH9 ? (address(this), WETH9) : (WETH9, address(this));

        // Get pool address
        address poolAddr = IUniswapV3Factory(positionManager.factory()).getPool(token0, token1, poolFee);
        if (poolAddr != address(0)) {
            pair = poolAddr;
        }

        uint256 amount0Desired = token0 == address(this) ? tokensToMigrate : collateralAmount;
        uint256 amount1Desired = token0 == address(this) ? collateralAmount : tokensToMigrate;

        INonfungiblePositionManager.MintParams memory params = INonfungiblePositionManager.MintParams({
            token0: token0,
            token1: token1,
            fee: poolFee,
            tickLower: MIN_TICK,
            tickUpper: MAX_TICK,
            amount0Desired: amount0Desired,
            amount1Desired: amount1Desired,
            amount0Min: 0,
            amount1Min: 0,
            recipient: address(this),
            deadline: block.timestamp + 10
        });

        (uint256 tokenId,,,) = positionManager.mint{value: collateralAmount}(params);
        positionTokenId = tokenId;

        // Return any unspent ETH to treasury
        positionManager.refundETH();
        if (address(this).balance > 0) {
            _transferCollateral(treasury, address(this).balance);
        }

        // Claim any remaining token in the position manager (should be zero)
        positionManager.sweepToken(address(this), 0, address(this));
        // burn any remaining token in this contract
        uint256 remainingTokenBalance = balanceOf(address(this));
        if (remainingTokenBalance > 0) {
            _burn(address(this), remainingTokenBalance);
        }

        // Liquidity is locked by holding the NFT in this contract with no withdrawal path
    }

    function setLpFeeReceiver(address _receiver) external onlyFactory {
        require(_receiver != address(0), "lpFeeReceiver zero");
        lpFeeReceiver = _receiver;
    }

    function collectLpFees(uint128 amount0Max, uint128 amount1Max)
        external
        onlyFactory
        nonReentrant
        returns (uint256 amount0, uint256 amount1)
    {
        require(positionTokenId != 0, "not migrated");

        (amount0, amount1) = positionManager.collect(
            INonfungiblePositionManager.CollectParams({
                tokenId: positionTokenId,
                recipient: lpFeeReceiver,
                amount0Max: amount0Max,
                amount1Max: amount1Max
            })
        );
    }

    function getMarketCap() public view returns (uint256) {
        uint256 mc = (virtualCollateralReserves * 10 ** 18 * totalSupply()) / virtualTokenReserves;
        return mc / 10 ** 18;
    }

    function getMaxMarketCap() public view returns (uint256) {
        uint256 mc = (virtualCollateralReserves * 10 ** 18 * initialTokenSupply) / virtualTokenReserves;
        return mc / 10 ** 18;
    }

    function getCurveProgressBps() external view returns (uint256) {
        uint256 progress = ((initialTokenSupply - balanceOf(address(this))) * MULTIPLIER) / tokensMigrationThreshold;
        return progress < 100 ? 100 : (progress > MULTIPLIER ? MULTIPLIER : progress);
    }

    function _calculateFee(uint256 _amount) internal view returns (uint256 treasuryFee, uint256 dexFee) {
        treasuryFee = (_amount * feeBPS) / MULTIPLIER;
        dexFee = (treasuryFee * dexFeeBPS) / MULTIPLIER;
        treasuryFee -= dexFee;
    }

    function _calculateFeeFromTotalAmount(uint256 totalAmount)
        internal
        view
        returns (uint256 swapAmount, uint256 treasuryFee, uint256 dexFee)
    {
        // totalAmount = swapAmount + treasuryFee;  // From function _calculateFee
        // totalAmount = swapAmount + (swapAmount * feeBPS / MULTIPLIER)
        // totalAmount = swapAmount * ((MULTIPLIER + feeBPS) / MULTIPLIER)
        // swapAmount = totalAmount / ((MULTIPLIER + feeBPS) / MULTIPLIER)
        // swapAmount = (totalAmount * MULTIPLIER) / (MULTIPLIER + feeBPS);
        swapAmount = (totalAmount * MULTIPLIER) / (MULTIPLIER + feeBPS);

        treasuryFee = (swapAmount * feeBPS) / MULTIPLIER;
        dexFee = (treasuryFee * dexFeeBPS) / MULTIPLIER;
        treasuryFee -= dexFee;
    }

    function _splitFee(uint256 _feeAmount) internal view returns (uint256 treasuryFee, uint256 dexFee) {
        dexFee = (_feeAmount * dexFeeBPS) / MULTIPLIER;
        treasuryFee = _feeAmount - dexFee;
    }

    function _transferCollateral(address _to, uint256 _amount) internal {
        (bool sent,) = _to.call{value: _amount}("");
        if (!sent) revert FailedToSendETH();
    }

    function _checkMcUpperLimit() internal view {
        uint256 mc = getMaxMarketCap();

        if (mc > mcUpperLimit) revert MarketcapThresholdReached();
    }

    function _checkMcLower() internal {
        uint256 mc = getMaxMarketCap();

        if (mc > mcLowerLimit) {
            tradingStopped = true;
            // Snapshot token balance to prevent donation attacks during migration
            _migrationTokenBalance = balanceOf(address(this));
        }
    }

    function transfer(address to, uint256 amount) public override(ERC20, IERC20) returns (bool) {
        if (to == pair && sendingToPairNotAllowed) revert SendingToPairIsNotAllowedBeforeMigration();
        return super.transfer(to, amount);
    }

    function transferFrom(address from, address to, uint256 amount) public override(ERC20, IERC20) returns (bool) {
        if (to == pair && sendingToPairNotAllowed) revert SendingToPairIsNotAllowedBeforeMigration();
        return super.transferFrom(from, to, amount);
    }

    function _initOrValidatePool(address token0, address token1, uint160 targetSqrtPrice)
        internal
        returns (address pool)
    {
        address uniFactory = positionManager.factory();
        pool = IUniswapV3Factory(uniFactory).getPool(token0, token1, poolFee);

        if (pool != address(0)) {
            revert PoolAlreadyExists();
        }

        // Create and initialize the pool when none exists
        pool = positionManager.createAndInitializePoolIfNecessary(token0, token1, poolFee, targetSqrtPrice);
    }

    function _getSqrtPriceX96(uint256 amountToken, uint256 amountETH, bool token0IsThis)
        internal
        pure
        returns (uint160 priceX96)
    {
        // price = token1/token0
        // If token0 is this token, price = ETH / token
        // If token0 is WETH, price = token / ETH

        if (token0IsThis) {
            // price = sqrt(amountETH / amountToken) * 2^48 * 2^48 = sqrt(amountETH * 2^96 / amountToken) * 2^48
            priceX96 = uint160(_sqrt((amountETH << 96) / amountToken)) << 48;
        } else {
            // price = sqrt(amountToken / amountETH) * 2^48 * 2^48 = sqrt(amountToken * 2^96 / amountETH) * 2^48
            priceX96 = uint160(_sqrt((amountToken << 96) / amountETH)) << 48;
        }
    }

    function _ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        return (a - 1) / b + 1;
    }

    

    // FROM https://github.com/abdk-consulting/abdk-libraries-solidity/blob/16d7e1dd8628dfa2f88d5dadab731df7ada70bdd/ABDKMath64x64.sol#L687
    function _sqrt(uint256 _x) private pure returns (uint128) {
        if (_x == 0) {
            return 0;
        } else {
            uint256 xx = _x;
            uint256 r = 1;
            if (xx >= 0x100000000000000000000000000000000) {
                xx >>= 128;
                r <<= 64;
            }
            if (xx >= 0x10000000000000000) {
                xx >>= 64;
                r <<= 32;
            }
            if (xx >= 0x100000000) {
                xx >>= 32;
                r <<= 16;
            }
            if (xx >= 0x10000) {
                xx >>= 16;
                r <<= 8;
            }
            if (xx >= 0x100) {
                xx >>= 8;
                r <<= 4;
            }
            if (xx >= 0x10) {
                xx >>= 4;
                r <<= 2;
            }
            if (xx >= 0x8) r <<= 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1;
            r = (r + _x / r) >> 1; // Seven iterations should be enough
            uint256 r1 = _x / r;
            return uint128(r < r1 ? r : r1);
        }
    }

    receive() external payable {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

interface INonfungiblePositionManager {
    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    struct MintParams {
        address token0;
        address token1;
        uint24 fee;
        int24 tickLower;
        int24 tickUpper;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
        uint256 deadline;
    }

    function factory() external view returns (address);
    function WETH9() external view returns (address);

    function createAndInitializePoolIfNecessary(address token0, address token1, uint24 fee, uint160 sqrtPriceX96)
        external
        payable
        returns (address pool);

    function mint(MintParams calldata params)
        external
        payable
        returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);

    /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
    /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
    /// that use ether for the input amount
    function refundETH() external payable;

    /// @notice Transfers the full amount of a token held by this contract to recipient
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
    /// @param token The contract address of the token which will be transferred to `recipient`
    /// @param amountMinimum The minimum amount of token required for a transfer
    /// @param recipient The destination address of the token
    function sweepToken(address token, uint256 amountMinimum, address recipient) external payable;

    function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

interface IUniswapV3Factory {
    event PoolCreated(address token0, address token1, uint24 fee, int24 tickSpacing, address pool);

    function getPool(address tokenA, address tokenB, uint24 fee) external view returns (address pool);
    function createPool(address tokenA, address tokenB, uint24 fee) external returns (address pool);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.23;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IMemeTokenV3 is IERC20 {
    enum CurveType {
        ConstantProductV1
    }

    struct ConstructorParams {
        string name;
        string symbol;
        address creator;
        uint256 totalSupply;
        uint256 virtualTokenReserves;
        uint256 virtualCollateralReserves;
        uint256 feeBasisPoints;
        uint256 dexFeeBasisPoints;
        uint256 migrationFeeFixed;
        uint256 poolCreationFee;
        uint256 mcLowerLimit;
        uint256 mcUpperLimit;
        uint256 tokensMigrationThreshold;
        address treasury;
        address positionManager;
        address dexTreasury;
        uint24 poolFee;
        address lpFeeReceiver; // receiver of collected Uniswap V3 LP fees
    }

    error NotEnoughETHReserves();
    error InsufficientTokenReserves();
    error FailedToSendETH();
    error NotEnoughETHToBuyTokens();
    error SlippageCheckFailed();
    error MarketcapThresholdReached();
    error SendingToPairIsNotAllowedBeforeMigration();
    error TradingStopped();
    error OnlyFactory();
    error PoolAlreadyInitializedWithDifferentPrice();

    function buyExactIn(uint256 _amountOutMin)
        external
        payable
        returns (uint256 collateralToPayWithFee, uint256 helioFee, uint256 dexFee);

    function sellExactIn(uint256 _tokenAmount, uint256 _amountOutMin)
        external
        payable
        returns (uint256 collateralToReceiveMinusFee, uint256 helioFee, uint256 dexFee);

    function getAmountOutAndFee(uint256 _amountIn, uint256 _reserveIn, uint256 _reserveOut, bool _paymentTokenIsIn)
        external
        view
        returns (uint256 amountOut, uint256 fee);

    function migrate() external returns (uint256 tokensToMigrate, uint256 tokensToBurn, uint256 collateralAmount);

    function getCurveProgressBps() external view returns (uint256);

    function getMarketCap() external view returns (uint256);

    function getMaxMarketCap() external view returns (uint256);

    // LP fee receiver config and collection
    function lpFeeReceiver() external view returns (address);
    function setLpFeeReceiver(address _receiver) external;
    function collectLpFees(uint128 amount0Max, uint128 amount1Max)
        external
        returns (uint256 amount0, uint256 amount1);
}

File 9 of 14 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 14 of 14 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"virtualTokenReserves","type":"uint256"},{"internalType":"uint256","name":"virtualCollateralReserves","type":"uint256"},{"internalType":"uint256","name":"feeBasisPoints","type":"uint256"},{"internalType":"uint256","name":"dexFeeBasisPoints","type":"uint256"},{"internalType":"uint256","name":"migrationFeeFixed","type":"uint256"},{"internalType":"uint256","name":"poolCreationFee","type":"uint256"},{"internalType":"uint256","name":"mcLowerLimit","type":"uint256"},{"internalType":"uint256","name":"mcUpperLimit","type":"uint256"},{"internalType":"uint256","name":"tokensMigrationThreshold","type":"uint256"},{"internalType":"address","name":"treasury","type":"address"},{"internalType":"address","name":"positionManager","type":"address"},{"internalType":"address","name":"dexTreasury","type":"address"},{"internalType":"uint24","name":"poolFee","type":"uint24"},{"internalType":"address","name":"lpFeeReceiver","type":"address"}],"internalType":"struct IMemeTokenV3.ConstructorParams","name":"_params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"FailedToSendETH","type":"error"},{"inputs":[],"name":"InsufficientTokenReserves","type":"error"},{"inputs":[],"name":"InvalidMarketCapTarget","type":"error"},{"inputs":[],"name":"MarketcapThresholdReached","type":"error"},{"inputs":[],"name":"NotEnoughETHReserves","type":"error"},{"inputs":[],"name":"NotEnoughETHToBuyTokens","type":"error"},{"inputs":[],"name":"OnlyFactory","type":"error"},{"inputs":[],"name":"PoolAlreadyExists","type":"error"},{"inputs":[],"name":"PoolAlreadyInitializedWithDifferentPrice","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"SendingToPairIsNotAllowedBeforeMigration","type":"error"},{"inputs":[],"name":"SlippageCheckFailed","type":"error"},{"inputs":[],"name":"TradingStopped","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MULTIPLIER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH9","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountOutMin","type":"uint256"}],"name":"buyExactIn","outputs":[{"internalType":"uint256","name":"collateralToPayWithFee","type":"uint256"},{"internalType":"uint256","name":"helioFee","type":"uint256"},{"internalType":"uint256","name":"dexFee","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint128","name":"amount0Max","type":"uint128"},{"internalType":"uint128","name":"amount1Max","type":"uint128"}],"name":"collectLpFees","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"creator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curveType","outputs":[{"internalType":"enum IMemeTokenV3.CurveType","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexFeeBPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexTreasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeBPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fixedMigrationFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountIn","type":"uint256"},{"internalType":"uint256","name":"_reserveIn","type":"uint256"},{"internalType":"uint256","name":"_reserveOut","type":"uint256"},{"internalType":"bool","name":"_paymentTokenIsIn","type":"bool"}],"name":"getAmountOutAndFee","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurveProgressBps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMarketCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMaxMarketCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialTokenSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpFeeReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mcLowerLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mcUpperLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"migrate","outputs":[{"internalType":"uint256","name":"tokensToMigrate","type":"uint256"},{"internalType":"uint256","name":"tokensToBurn","type":"uint256"},{"internalType":"uint256","name":"collateralAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolCreationFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolFee","outputs":[{"internalType":"uint24","name":"","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"positionManager","outputs":[{"internalType":"contract INonfungiblePositionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"positionTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenAmount","type":"uint256"},{"internalType":"uint256","name":"_amountCollateralMin","type":"uint256"}],"name":"sellExactIn","outputs":[{"internalType":"uint256","name":"collateralToReceiveMinusFee","type":"uint256"},{"internalType":"uint256","name":"helioFee","type":"uint256"},{"internalType":"uint256","name":"dexFee","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"sendingToPairNotAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"}],"name":"setLpFeeReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensMigrationThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradingStopped","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virtualCollateralReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virtualCollateralReservesInitial","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"virtualTokenReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

61026080604052346106be57612a25803803809161001d8285610a00565b83398101906020818303126106be578051906001600160401b0382116106be5701610240818303126106be576040519161024083016001600160401b038111848210176109035760405281516001600160401b0381116106be5781610083918401610a23565b83526020820151906001600160401b0382116106be576100a4918301610a23565b918260208201526100b760408301610a78565b9060408101918252606083015190606081019182526080840151936080820194855260a081015160a0830190815260c082015160c0840190815260e08301519760e08501988952610100840151610100860190815261012085015161012087019081526101408601519161014088019283526101608701519361016089019485526101808801519c6101808a019d8e526101546101a08a01610a78565b906101a08b0191825261016a6101c08b01610a78565b976101c08c019889526101806101e08c01610a78565b936101e08d019485526102008c01519b62ffffff8d168d036106be576102206101b1918f610200019e8f5201610a78565b6102208e019081529c518051906001600160401b0382116109035760035490600182811c921680156109f6575b60208310146108e55781601f849311610988575b50602090601f8311600114610922575f92610917575b50508160011b915f199060031b1c1916176003555b8051906001600160401b0382116109035760045490600182811c921680156108f9575b60208310146108e55781601f849311610877575b50602090601f8311600114610811575f92610806575b50508160011b915f199060031b1c1916176004555b6001600555600b805460ff60a81b1916600160a81b1790558c519930156107f35760049d8b6102b260209d600254610aaa565b600255305f525f8d5260405f208181540190556040519081525f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8e3093a35160065551600881905560808190529e5160078190559d516001600160a01b0390811661018052905160a052905160c052905181166101a052905181166101c052905161014052905161016052905160e052905161010052885161012052815181166102005290516040516312a9293f60e21b815295869290918391165afa9283156106ca575f936107b3575b506102208390525162ffffff1661024052336101e05251600b80546001600160a01b0319166001600160a01b039283161790551690308211156107ac573091935b5192831580156107a2575b61077f578382039382851161078e57821461077f576103ed84916103f293610ab7565b610a8c565b6001600160a01b039091169130830361075857600160301b600160a01b0391610426916104219160601b610a8c565b610aff565b60301b16915b6102005160405163c45a015560e01b815290602090829060049082906001600160a01b03165afa9081156106ca575f9161071e575b50602062ffffff610240511692606460405180948193630b4c774160e11b835288600484015260018060a01b031696876024840152604483015260018060a01b03165afa9081156106ca575f916106e4575b506001600160a01b03166106d55760846020925f60018060a01b03610200511662ffffff61024051169660405197889687956309f56ab160e11b875260048701526024860152604485015260018060a01b031660648401525af19081156106ca575f9161068c575b50600980546001600160a01b0319166001600160a01b0392909216919091179055604051611dc49081610c6182396080518181816105ce01526109b2015260a05181818161160d01528181611a910152611b0a015260c0518181816108ec01528181610ef40152611ac2015260e051818181610f6501526110de01526101005181818161110d01526111c801526101205181818161022a01526113cb01526101405181818161051301526108be01526101605181818161059301526109430152610180518161193601526101a05181818161034d0152818161091e01528181610f9d015261103d01526101c0518181816103770152818161097c01528181610e3a015261106701526101e0518181816102ca0152818161054c0152818161081701528181610fdd01528181611282015261145e01526102005181818161086401528181610eae01526115330152610220518181816109da0152611200015261024051818181610a5d01526117f00152f35b90506020813d6020116106c2575b816106a760209383610a00565b810103126106be576106b890610a78565b5f61051b565b5f80fd5b3d915061069a565b6040513d5f823e3d90fd5b630188c99160e11b5f5260045ffd5b90506020813d602011610716575b816106ff60209383610a00565b810103126106be5761071090610a78565b5f6104b3565b3d91506106f2565b90506020813d602011610750575b8161073960209383610a00565b810103126106be5761074a90610a78565b5f610461565b3d915061072c565b600160301b600160a01b039161077591610421919060601b610a8c565b60301b169161042c565b635c571f3760e11b5f5260045ffd5b634e487b7160e01b5f52601160045260245ffd5b50818410156103ca565b30936103bf565b9092506020813d6020116107eb575b816107cf60209383610a00565b810103126106be576107e462ffffff91610a78565b929061037e565b3d91506107c2565b63ec442f0560e01b5f525f60045260245ffd5b015190505f8061026a565b60045f9081528281209350601f198516905b81811061085f5750908460019594939210610847575b505050811b0160045561027f565b01515f1960f88460031b161c191690555f8080610839565b92936020600181928786015181550195019301610823565b60045f529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c810191602085106108db575b90601f859493920160051c01905b8181106108cd5750610254565b5f81558493506001016108c0565b90915081906108b2565b634e487b7160e01b5f52602260045260245ffd5b91607f1691610240565b634e487b7160e01b5f52604160045260245ffd5b015190505f80610208565b60035f9081528281209350601f198516905b8181106109705750908460019594939210610958575b505050811b0160035561021d565b01515f1960f88460031b161c191690555f808061094a565b92936020600181928786015181550195019301610934565b60035f529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c810191602085106109ec575b90601f859493920160051c01905b8181106109de57506101f2565b5f81558493506001016109d1565b90915081906109c3565b91607f16916101de565b601f909101601f19168101906001600160401b0382119082101761090357604052565b81601f820112156106be578051906001600160401b0382116109035760405192610a57601f8401601f191660200185610a00565b828452602083830101116106be57815f9260208093018386015e8301015290565b51906001600160a01b03821682036106be57565b8115610a96570490565b634e487b7160e01b5f52601260045260245ffd5b9190820180921161078e57565b5f91905f198282099282820293848082109103818114610af7570360011115610ae557509060019109900390565b634e487b71905260116020526024601cfd5b505050505090565b80610b0957505f90565b600181600160801b811015610c49575b610bce610bc1610bb4610ba7610b9a610b8d610be59760088868010000000000000000610bdb9a1015610c3c575b640100000000811015610c2f575b62010000811015610c23575b610100811015610c17575b6010811015610c0a575b1015610c02575b610b87818b610a8c565b90610aaa565b60011c610b87818a610a8c565b60011c610b878189610a8c565b60011c610b878188610a8c565b60011c610b878187610a8c565b60011c610b878186610a8c565b60011c610b878185610a8c565b60011c8092610a8c565b80821015610bfb57505b6001600160801b031690565b9050610bef565b60011b610b7d565b60041c9160021b91610b76565b811c9160041b91610b6c565b60101c91811b91610b61565b60201c9160101b91610b55565b60401c9160201b91610b47565b50680100000000000000009050608082901c610b1956fe608080604052600436101561001c575b50361561001a575f80fd5b005b5f905f3560e01c90816302d05d3f1461192457508063059f8b161461190857806306fdde0314611814578063089fe6aa146117d5578063095ea7b31461172d57806309d2d0bc14611705578063152044811461166a5780631655bc621461164d57806318160ddd146116305780631a1c6e53146115f65780631f4db4e1146114235780632368da321461138857806323b872dd146113155780632a2befd914611267578063313ce5671461124c57806342966c681461122f5780634aa4a4fc146111eb5780634c7766b5146111b15780634fb3fbe714610fcc57806361d027b314610f885780636d04eb9f14610f4e57806370a0823114610f1757806371ea0d8e14610edd578063791b98bc14610e9957806379cc679014610e6957806385f377ca14610e255780638fd3ab801461080457806390825c281461078d57806395d89b4114610688578063a8aa1b311461065f578063a9059cbb146105f1578063b026a121146105b6578063be74615f1461057b578063c45a015514610536578063c48afe16146104fb578063c6d8b778146104d5578063ceefe5d1146104b7578063d3728de41461049b578063dd62ed3e14610448578063e8e70c4c1461042a578063e98d5cd5146102b7578063eb13a7d214610299578063ed4c639d14610276578063fd62bcd7146102505763fe94c2690361000f573461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b80fd5b503461024d578060031936011261024d57602060ff600b5460a01c166040519015158152f35b503461024d578060031936011261024d576020610291611a47565b604051908152f35b503461024d578060031936011261024d576020600654604051908152f35b50604036600319011261024d57600435907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316330361041b5760ff600b5460a01c1661040c57610326610314600854846119dd565b610320846007546119f0565b906119fd565b9161033083611a88565b919093610346836103418784611a1b565b611a1b565b93610371867f0000000000000000000000000000000000000000000000000000000000000000611be6565b61039b847f0000000000000000000000000000000000000000000000000000000000000000611be6565b60243585106103fd5750816103c86103dc926103bd6103f996956007546119f0565b600755600854611a1b565b6008556103d58533611be6565b3033611c41565b604051938493846040919493926060820195825260208201520152565b0390f35b630a1c173f60e41b8152600490fd5b63058aab2d60e21b8152600490fd5b630636a15760e11b8152600490fd5b503461024d578060031936011261024d576020600854604051908152f35b503461024d57604036600319011261024d57604061046461198f565b9161046d6119a5565b9260018060a01b031681526001602052209060018060a01b03165f52602052602060405f2054604051908152f35b503461024d578060031936011261024d57602090604051908152f35b503461024d578060031936011261024d576020600a54604051908152f35b503461024d578060031936011261024d57602060ff600b5460a81c166040519015158152f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d578060031936011261024d576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d57604036600319011261024d5761060b61198f565b6009549091906001600160a01b0380841691161480610650575b610641576106366024358333611c41565b602060405160018152f35b633b95747f60e21b8152600490fd5b5060ff600b5460a81c16610625565b503461024d578060031936011261024d576009546040516001600160a01b039091168152602090f35b503461024d578060031936011261024d576040519080600454908160011c91600181168015610783575b60208410811461076f5783865290811561074857506001146106eb575b6103f9846106df818603826119bb565b60405191829182611965565b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b80821061072e575090915081016020016106df826106cf565b919260018160209254838588010152019101909291610715565b60ff191660208087019190915292151560051b850190920192506106df91508390506106cf565b634e487b7160e01b83526022600452602483fd5b92607f16926106b2565b503461024d578060031936011261024d5760085490670de0b6b3a7640000820291808304670de0b6b3a764000014901517156107f0576020670de0b6b3a76400006107e76107de85600254906119dd565b600754906119fd565b04604051908152f35b634e487b7160e01b81526011600452602490fd5b5034610ce9575f366003190112610ce9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e1657600b805460ff60a81b19169055600c5460405163095ea7b360e01b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166004820181905260248201839052906020816044815f305af18015610cde57610ddf575b506108bb8280611a1b565b927f0000000000000000000000000000000000000000000000000000000000000000916109d76109196127106109117f0000000000000000000000000000000000000000000000000000000000000000876119dd565b048095611a1b565b6103417f0000000000000000000000000000000000000000000000000000000000000000956103417f00000000000000000000000000000000000000000000000000000000000000009361097661097086836119f0565b8a611be6565b6109a0837f0000000000000000000000000000000000000000000000000000000000000000611be6565b6109aa8b30611b4f565b6103416008547f000000000000000000000000000000000000000000000000000000000000000090611a1b565b927f00000000000000000000000000000000000000000000000000000000000000006001600160a01b038116301015610dd857305b60405163c45a015560e01b815290602082600481885afa918215610cde575f92610db7575b50604051630b4c774160e11b81526001600160a01b0391821660048201819052938216602482018190527f000000000000000000000000000000000000000000000000000000000000000062ffffff166044830181905293909260209183916064918391165afa908115610cde575f91610d88575b506001600160a01b031680610d6a575b50308314918215610d635788925b15610d5c5787925b600a420193844211610d485760405195610160870187811067ffffffffffffffff821117610d3457604052865260208601938452604086019283526060860191620d89b319835260808701620d89b4815260a0880191825260c0880192835260e08801935f855262ffffff6101008a01965f88526101208b0198308a526101408c019a8b526040519b634418b22b60e11b8d5260018060a01b0390511660048d015260018060a01b0390511660248c0152511660448a01525160020b60648901525160020b60848801525160a48701525160c48601525160e48501525161010484015260018060a01b03905116610124830152516101448201526080816101648188875af1908115610cde575f91610ced575b50600a55813b15610ce957604051630910874560e11b81525f8160048183875af18015610cde57610cc9575b5047610cb8575b50803b15610cb45781809160646040518094819363df2ab5bb60e01b83523060048401528160248401523060448401525af18015610ca957610c94575b509060406103f99230815280602052205480610c84575b50604051938493846040919493926060820195825260208201520152565b610c8e9030611b4f565b5f610c66565b610c9f8280926119bb565b61024d575f610c4f565b6040513d84823e3d90fd5b5080fd5b610cc3904790611be6565b5f610c12565b610cd69193505f906119bb565b5f915f610c0b565b6040513d5f823e3d90fd5b5f80fd5b90506080813d608011610d2c575b81610d08608093836119bb565b81010312610ce957602081519101516001600160801b03811603610ce9575f610bdf565b3d9150610cfb565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b8892610acc565b8792610ac4565b6bffffffffffffffffffffffff60a01b60095416176009555f610ab6565b610daa915060203d602011610db0575b610da281836119bb565b810190611a28565b5f610aa6565b503d610d98565b610dd191925060203d602011610db057610da281836119bb565b905f610a31565b3090610a0c565b6020813d602011610e0e575b81610df8602093836119bb565b81010312610ce9575180151581146108b0575f80fd5b3d9150610deb565b630636a15760e11b5f5260045ffd5b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610ce9576040366003190112610ce95761001a610e8561198f565b60243590610e94823383611ceb565b611b4f565b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9576020366003190112610ce9576001600160a01b03610f3861198f565b165f525f602052602060405f2054604051908152f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b6020366003190112610ce9576004357f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e165760ff600b5460a01c166111a257305f525f6020528060405f205411156111935761103434611af2565b926110618293927f0000000000000000000000000000000000000000000000000000000000000000611be6565b61108b847f0000000000000000000000000000000000000000000000000000000000000000611be6565b60075461109881846119dd565b926110aa6008549461032083876119f0565b928310611184576110d4936110c2846110ca94611a1b565b6007556119f0565b6008553330611c41565b6110dc611a47565b7f00000000000000000000000000000000000000000000000000000000000000001061115a575b61110b611a47565b7f00000000000000000000000000000000000000000000000000000000000000001061114b57604080513481526020810192909252810191909152606090f35b6353dfa97560e01b5f5260045ffd5b600b805460ff60a01b1916600160a01b179055305f90815260208190526040902054600c55611103565b630a1c173f60e41b5f5260045ffd5b63904db1ff60e01b5f5260045ffd5b63058aab2d60e21b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9575f366003190112610ce9576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610ce9576020366003190112610ce95761001a60043533611b4f565b34610ce9575f366003190112610ce957602060405160128152f35b34610ce9576020366003190112610ce95761128061198f565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e16576001600160a01b031680156112db576bffffffffffffffffffffffff60a01b600b541617600b555f80f35b60405162461bcd60e51b81526020600482015260126024820152716c704665655265636569766572207a65726f60701b6044820152606490fd5b34610ce9576060366003190112610ce95761132e61198f565b6113366119a5565b60095460443591906001600160a01b0380831691161480611379575b61136a5761063692611365833383611ceb565b611c41565b633b95747f60e21b5f5260045ffd5b5060ff600b5460a81c16611352565b34610ce9575f366003190112610ce9576113b0600654305f525f60205260405f205490611a1b565b6127108102908082046127101490151715610d48576113f0907f0000000000000000000000000000000000000000000000000000000000000000906119fd565b6064811015611406575060206064604051908152f35b61271081111561141b57506020612710610291565b602090610291565b34610ce9576040366003190112610ce9576004356001600160801b038116809103610ce9576024356001600160801b038116809103610ce9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03163303610e16576002600554146115e7576002600555600a549081156115b357600b546040519360808501916001600160a01b031667ffffffffffffffff831186841017610d34576001600160801b0394859360405286526020860190815260408601918252606086019384526040519563fc6f786560e01b875251600487015260018060a01b03905116602486015251166044840152511660648201526040816084815f60018060a01b037f0000000000000000000000000000000000000000000000000000000000000000165af18015610cde575f905f90611579575b60409250600160055582519182526020820152f35b50506040813d6040116115ab575b81611594604093836119bb565b81010312610ce95780602060409251910151611564565b3d9150611587565b60405162461bcd60e51b815260206004820152600c60248201526b1b9bdd081b5a59dc985d195960a21b6044820152606490fd5b633ee5aeb560e01b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9575f366003190112610ce9576020600254604051908152f35b34610ce9575f366003190112610ce9576020600754604051908152f35b34610ce9576080366003190112610ce9576064356044356024356004358315158403610ce957604093156116d257906103206116b76116be6116ae6116c495611af2565b909391936119f0565b95826119dd565b926119f0565b905b82519182526020820152f35b806116be6116e394610320936119dd565b6116ff6116f86116f283611a88565b906119f0565b8092611a1b565b906116c6565b34610ce9575f366003190112610ce957600b546040516001600160a01b039091168152602090f35b34610ce9576040366003190112610ce95761174661198f565b6024359033156117c2576001600160a01b03169081156117af57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b34610ce9575f366003190112610ce957602060405162ffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610ce9575f366003190112610ce9576040515f6003548060011c906001811680156118fe575b6020831081146118ea578285529081156118c65750600114611868575b6103f9836106df818503826119bb565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b8082106118ac575090915081016020016106df611858565b919260018160209254838588010152019101909291611894565b60ff191660208086019190915291151560051b840190910191506106df9050611858565b634e487b7160e01b5f52602260045260245ffd5b91607f169161183b565b34610ce9575f366003190112610ce95760206040516127108152f35b34610ce9575f366003190112610ce9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b0382168203610ce957565b602435906001600160a01b0382168203610ce957565b90601f8019910116810190811067ffffffffffffffff821117610d3457604052565b81810292918115918404141715610d4857565b91908201809211610d4857565b8115611a07570490565b634e487b7160e01b5f52601260045260245ffd5b91908203918211610d4857565b90816020910312610ce957516001600160a01b0381168103610ce95790565b600854670de0b6b3a7640000810290808204670de0b6b3a76400001490151715610d4857611a846107de670de0b6b3a764000092600654906119dd565b0490565b611ab6612710917f0000000000000000000000000000000000000000000000000000000000000000906119dd565b04611aef612710611ae77f0000000000000000000000000000000000000000000000000000000000000000846119dd565b048092611a1b565b91565b906127108202918083046127101490151715610d48577f00000000000000000000000000000000000000000000000000000000000000009182612710018061271011610d4857611b48611ab691612710936119fd565b93846119dd565b9091906001600160a01b03168015611bd357805f525f60205260405f2054838110611bb9576020845f94957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef938587528684520360408620558060025403600255604051908152a3565b915063391434e360e21b5f5260045260245260445260645ffd5b634b637e8f60e11b5f525f60045260245ffd5b5f80809381935af13d15611c3c573d67ffffffffffffffff8111610d345760405190611c1c601f8201601f1916602001836119bb565b81525f60203d92013e5b15611c2d57565b6338822c1360e11b5f5260045ffd5b611c26565b6001600160a01b0316908115611bd3576001600160a01b0316918215611cd857815f525f60205260405f2054818110611cbf57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b6001600160a01b039081165f818152600160209081526040808320948616835293905291909120549291905f198410611d25575b50505050565b828410611d6b5780156117c2576001600160a01b038216156117af575f52600160205260405f209060018060a01b03165f5260205260405f20910390555f808080611d1f565b508290637dc7a0d960e11b5f5260018060a01b031660045260245260445260645ffdfea26469706673582212206cfa62cf90b4b2aeae4932196831ad4bd2e526f89ce1829304325e2ad92fcfaa64736f6c634300081e003300000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000240000000000000000000000000000000000000000000000000000000000000028000000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a0000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000033b2e3c9fd0803ce8000000000000000000000000000000000000000000000000000000002386f26fc100000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004e9f571736b8065000000000000000000000000000000000000000000000000058d15e176280000000000000000000000000000000000000000000002b02b93faf277769ff203320000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000002659c6085d26144117d904c46b48b6d180393d270000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000000000000000000000000000000000000000000bb80000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544000000000000000000000000000000000000000000000000000000000000000954657374204d656d6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003544d450000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608080604052600436101561001c575b50361561001a575f80fd5b005b5f905f3560e01c90816302d05d3f1461192457508063059f8b161461190857806306fdde0314611814578063089fe6aa146117d5578063095ea7b31461172d57806309d2d0bc14611705578063152044811461166a5780631655bc621461164d57806318160ddd146116305780631a1c6e53146115f65780631f4db4e1146114235780632368da321461138857806323b872dd146113155780632a2befd914611267578063313ce5671461124c57806342966c681461122f5780634aa4a4fc146111eb5780634c7766b5146111b15780634fb3fbe714610fcc57806361d027b314610f885780636d04eb9f14610f4e57806370a0823114610f1757806371ea0d8e14610edd578063791b98bc14610e9957806379cc679014610e6957806385f377ca14610e255780638fd3ab801461080457806390825c281461078d57806395d89b4114610688578063a8aa1b311461065f578063a9059cbb146105f1578063b026a121146105b6578063be74615f1461057b578063c45a015514610536578063c48afe16146104fb578063c6d8b778146104d5578063ceefe5d1146104b7578063d3728de41461049b578063dd62ed3e14610448578063e8e70c4c1461042a578063e98d5cd5146102b7578063eb13a7d214610299578063ed4c639d14610276578063fd62bcd7146102505763fe94c2690361000f573461024d578060031936011261024d5760206040517f000000000000000000000000000000000000000002b02b93faf277769ff203328152f35b80fd5b503461024d578060031936011261024d57602060ff600b5460a01c166040519015158152f35b503461024d578060031936011261024d576020610291611a47565b604051908152f35b503461024d578060031936011261024d576020600654604051908152f35b50604036600319011261024d57600435907f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b0316330361041b5760ff600b5460a01c1661040c57610326610314600854846119dd565b610320846007546119f0565b906119fd565b9161033083611a88565b919093610346836103418784611a1b565b611a1b565b93610371867f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b61039b847f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b60243585106103fd5750816103c86103dc926103bd6103f996956007546119f0565b600755600854611a1b565b6008556103d58533611be6565b3033611c41565b604051938493846040919493926060820195825260208201520152565b0390f35b630a1c173f60e41b8152600490fd5b63058aab2d60e21b8152600490fd5b630636a15760e11b8152600490fd5b503461024d578060031936011261024d576020600854604051908152f35b503461024d57604036600319011261024d57604061046461198f565b9161046d6119a5565b9260018060a01b031681526001602052209060018060a01b03165f52602052602060405f2054604051908152f35b503461024d578060031936011261024d57602090604051908152f35b503461024d578060031936011261024d576020600a54604051908152f35b503461024d578060031936011261024d57602060ff600b5460a81c166040519015158152f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000038d7ea4c680008152f35b503461024d578060031936011261024d576040517f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03168152602090f35b503461024d578060031936011261024d5760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b503461024d578060031936011261024d5760206040517f000000000000000000000000000000000000000000000000002386f26fc100008152f35b503461024d57604036600319011261024d5761060b61198f565b6009549091906001600160a01b0380841691161480610650575b610641576106366024358333611c41565b602060405160018152f35b633b95747f60e21b8152600490fd5b5060ff600b5460a81c16610625565b503461024d578060031936011261024d576009546040516001600160a01b039091168152602090f35b503461024d578060031936011261024d576040519080600454908160011c91600181168015610783575b60208410811461076f5783865290811561074857506001146106eb575b6103f9846106df818603826119bb565b60405191829182611965565b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b80821061072e575090915081016020016106df826106cf565b919260018160209254838588010152019101909291610715565b60ff191660208087019190915292151560051b850190920192506106df91508390506106cf565b634e487b7160e01b83526022600452602483fd5b92607f16926106b2565b503461024d578060031936011261024d5760085490670de0b6b3a7640000820291808304670de0b6b3a764000014901517156107f0576020670de0b6b3a76400006107e76107de85600254906119dd565b600754906119fd565b04604051908152f35b634e487b7160e01b81526011600452602490fd5b5034610ce9575f366003190112610ce9577f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e1657600b805460ff60a81b19169055600c5460405163095ea7b360e01b81527f0000000000000000000000002659c6085d26144117d904c46b48b6d180393d276001600160a01b03166004820181905260248201839052906020816044815f305af18015610cde57610ddf575b506108bb8280611a1b565b927f00000000000000000000000000000000000000000000000000038d7ea4c68000916109d76109196127106109117f0000000000000000000000000000000000000000000000000000000000000000876119dd565b048095611a1b565b6103417f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544956103417f00000000000000000000000000000000000000000000000000000000000000009361097661097086836119f0565b8a611be6565b6109a0837f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b6109aa8b30611b4f565b6103416008547f000000000000000000000000000000000000000000000000002386f26fc1000090611a1b565b927f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab626001600160a01b038116301015610dd857305b60405163c45a015560e01b815290602082600481885afa918215610cde575f92610db7575b50604051630b4c774160e11b81526001600160a01b0391821660048201819052938216602482018190527f0000000000000000000000000000000000000000000000000000000000000bb862ffffff166044830181905293909260209183916064918391165afa908115610cde575f91610d88575b506001600160a01b031680610d6a575b50308314918215610d635788925b15610d5c5787925b600a420193844211610d485760405195610160870187811067ffffffffffffffff821117610d3457604052865260208601938452604086019283526060860191620d89b319835260808701620d89b4815260a0880191825260c0880192835260e08801935f855262ffffff6101008a01965f88526101208b0198308a526101408c019a8b526040519b634418b22b60e11b8d5260018060a01b0390511660048d015260018060a01b0390511660248c0152511660448a01525160020b60648901525160020b60848801525160a48701525160c48601525160e48501525161010484015260018060a01b03905116610124830152516101448201526080816101648188875af1908115610cde575f91610ced575b50600a55813b15610ce957604051630910874560e11b81525f8160048183875af18015610cde57610cc9575b5047610cb8575b50803b15610cb45781809160646040518094819363df2ab5bb60e01b83523060048401528160248401523060448401525af18015610ca957610c94575b509060406103f99230815280602052205480610c84575b50604051938493846040919493926060820195825260208201520152565b610c8e9030611b4f565b5f610c66565b610c9f8280926119bb565b61024d575f610c4f565b6040513d84823e3d90fd5b5080fd5b610cc3904790611be6565b5f610c12565b610cd69193505f906119bb565b5f915f610c0b565b6040513d5f823e3d90fd5b5f80fd5b90506080813d608011610d2c575b81610d08608093836119bb565b81010312610ce957602081519101516001600160801b03811603610ce9575f610bdf565b3d9150610cfb565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b8892610acc565b8792610ac4565b6bffffffffffffffffffffffff60a01b60095416176009555f610ab6565b610daa915060203d602011610db0575b610da281836119bb565b810190611a28565b5f610aa6565b503d610d98565b610dd191925060203d602011610db057610da281836119bb565b905f610a31565b3090610a0c565b6020813d602011610e0e575b81610df8602093836119bb565b81010312610ce9575180151581146108b0575f80fd5b3d9150610deb565b630636a15760e11b5f5260045ffd5b34610ce9575f366003190112610ce9576040517f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315446001600160a01b03168152602090f35b34610ce9576040366003190112610ce95761001a610e8561198f565b60243590610e94823383611ceb565b611b4f565b34610ce9575f366003190112610ce9576040517f0000000000000000000000002659c6085d26144117d904c46b48b6d180393d276001600160a01b03168152602090f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b34610ce9576020366003190112610ce9576001600160a01b03610f3861198f565b165f525f602052602060405f2054604051908152f35b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000004e9f571736b80658152f35b34610ce9575f366003190112610ce9576040517f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315446001600160a01b03168152602090f35b6020366003190112610ce9576004357f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e165760ff600b5460a01c166111a257305f525f6020528060405f205411156111935761103434611af2565b926110618293927f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b61108b847f0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544611be6565b60075461109881846119dd565b926110aa6008549461032083876119f0565b928310611184576110d4936110c2846110ca94611a1b565b6007556119f0565b6008553330611c41565b6110dc611a47565b7f00000000000000000000000000000000000000000000000004e9f571736b80651061115a575b61110b611a47565b7f000000000000000000000000000000000000000000000000058d15e1762800001061114b57604080513481526020810192909252810191909152606090f35b6353dfa97560e01b5f5260045ffd5b600b805460ff60a01b1916600160a01b179055305f90815260208190526040902054600c55611103565b630a1c173f60e41b5f5260045ffd5b63904db1ff60e01b5f5260045ffd5b63058aab2d60e21b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f000000000000000000000000000000000000000000000000058d15e1762800008152f35b34610ce9575f366003190112610ce9576040517f000000000000000000000000ee7d8bcfb72bc1880d0cf19822eb0a2e6577ab626001600160a01b03168152602090f35b34610ce9576020366003190112610ce95761001a60043533611b4f565b34610ce9575f366003190112610ce957602060405160128152f35b34610ce9576020366003190112610ce95761128061198f565b7f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e16576001600160a01b031680156112db576bffffffffffffffffffffffff60a01b600b541617600b555f80f35b60405162461bcd60e51b81526020600482015260126024820152716c704665655265636569766572207a65726f60701b6044820152606490fd5b34610ce9576060366003190112610ce95761132e61198f565b6113366119a5565b60095460443591906001600160a01b0380831691161480611379575b61136a5761063692611365833383611ceb565b611c41565b633b95747f60e21b5f5260045ffd5b5060ff600b5460a81c16611352565b34610ce9575f366003190112610ce9576113b0600654305f525f60205260405f205490611a1b565b6127108102908082046127101490151715610d48576113f0907f000000000000000000000000000000000000000002b02b93faf277769ff20332906119fd565b6064811015611406575060206064604051908152f35b61271081111561141b57506020612710610291565b602090610291565b34610ce9576040366003190112610ce9576004356001600160801b038116809103610ce9576024356001600160801b038116809103610ce9577f000000000000000000000000bb17d8cf0aaf392e0807ae5a241ff34aac04d8996001600160a01b03163303610e16576002600554146115e7576002600555600a549081156115b357600b546040519360808501916001600160a01b031667ffffffffffffffff831186841017610d34576001600160801b0394859360405286526020860190815260408601918252606086019384526040519563fc6f786560e01b875251600487015260018060a01b03905116602486015251166044840152511660648201526040816084815f60018060a01b037f0000000000000000000000002659c6085d26144117d904c46b48b6d180393d27165af18015610cde575f905f90611579575b60409250600160055582519182526020820152f35b50506040813d6040116115ab575b81611594604093836119bb565b81010312610ce95780602060409251910151611564565b3d9150611587565b60405162461bcd60e51b815260206004820152600c60248201526b1b9bdd081b5a59dc985d195960a21b6044820152606490fd5b633ee5aeb560e01b5f5260045ffd5b34610ce9575f366003190112610ce95760206040517f00000000000000000000000000000000000000000000000000000000000000648152f35b34610ce9575f366003190112610ce9576020600254604051908152f35b34610ce9575f366003190112610ce9576020600754604051908152f35b34610ce9576080366003190112610ce9576064356044356024356004358315158403610ce957604093156116d257906103206116b76116be6116ae6116c495611af2565b909391936119f0565b95826119dd565b926119f0565b905b82519182526020820152f35b806116be6116e394610320936119dd565b6116ff6116f86116f283611a88565b906119f0565b8092611a1b565b906116c6565b34610ce9575f366003190112610ce957600b546040516001600160a01b039091168152602090f35b34610ce9576040366003190112610ce95761174661198f565b6024359033156117c2576001600160a01b03169081156117af57335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b634a1406b160e11b5f525f60045260245ffd5b63e602df0560e01b5f525f60045260245ffd5b34610ce9575f366003190112610ce957602060405162ffffff7f0000000000000000000000000000000000000000000000000000000000000bb8168152f35b34610ce9575f366003190112610ce9576040515f6003548060011c906001811680156118fe575b6020831081146118ea578285529081156118c65750600114611868575b6103f9836106df818503826119bb565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b8082106118ac575090915081016020016106df611858565b919260018160209254838588010152019101909291611894565b60ff191660208086019190915291151560051b840190910191506106df9050611858565b634e487b7160e01b5f52602260045260245ffd5b91607f169161183b565b34610ce9575f366003190112610ce95760206040516127108152f35b34610ce9575f366003190112610ce9577f00000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a6001600160a01b03168152602090f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b0382168203610ce957565b602435906001600160a01b0382168203610ce957565b90601f8019910116810190811067ffffffffffffffff821117610d3457604052565b81810292918115918404141715610d4857565b91908201809211610d4857565b8115611a07570490565b634e487b7160e01b5f52601260045260245ffd5b91908203918211610d4857565b90816020910312610ce957516001600160a01b0381168103610ce95790565b600854670de0b6b3a7640000810290808204670de0b6b3a76400001490151715610d4857611a846107de670de0b6b3a764000092600654906119dd565b0490565b611ab6612710917f0000000000000000000000000000000000000000000000000000000000000064906119dd565b04611aef612710611ae77f0000000000000000000000000000000000000000000000000000000000000000846119dd565b048092611a1b565b91565b906127108202918083046127101490151715610d48577f00000000000000000000000000000000000000000000000000000000000000649182612710018061271011610d4857611b48611ab691612710936119fd565b93846119dd565b9091906001600160a01b03168015611bd357805f525f60205260405f2054838110611bb9576020845f94957fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef938587528684520360408620558060025403600255604051908152a3565b915063391434e360e21b5f5260045260245260445260645ffd5b634b637e8f60e11b5f525f60045260245ffd5b5f80809381935af13d15611c3c573d67ffffffffffffffff8111610d345760405190611c1c601f8201601f1916602001836119bb565b81525f60203d92013e5b15611c2d57565b6338822c1360e11b5f5260045ffd5b611c26565b6001600160a01b0316908115611bd3576001600160a01b0316918215611cd857815f525f60205260405f2054818110611cbf57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b63ec442f0560e01b5f525f60045260245ffd5b6001600160a01b039081165f818152600160209081526040808320948616835293905291909120549291905f198410611d25575b50505050565b828410611d6b5780156117c2576001600160a01b038216156117af575f52600160205260405f209060018060a01b03165f5260205260405f20910390555f808080611d1f565b508290637dc7a0d960e11b5f5260018060a01b031660045260245260445260645ffdfea26469706673582212206cfa62cf90b4b2aeae4932196831ad4bd2e526f89ce1829304325e2ad92fcfaa64736f6c634300081e0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000240000000000000000000000000000000000000000000000000000000000000028000000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a0000000000000000000000000000000000000000033b2e3c9fd0803ce80000000000000000000000000000000000000000000000033b2e3c9fd0803ce8000000000000000000000000000000000000000000000000000000002386f26fc100000000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000038d7ea4c68000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004e9f571736b8065000000000000000000000000000000000000000000000000058d15e176280000000000000000000000000000000000000000000002b02b93faf277769ff203320000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000002659c6085d26144117d904c46b48b6d180393d270000000000000000000000000d5d54760f829b0ac8dddc3763f351963db315440000000000000000000000000000000000000000000000000000000000000bb80000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544000000000000000000000000000000000000000000000000000000000000000954657374204d656d6500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003544d450000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _params (tuple):
Arg [1] : name (string): Test Meme
Arg [2] : symbol (string): TME
Arg [3] : creator (address): 0x95c94381522CcbC602843615c6c28b53c1c6121a
Arg [4] : totalSupply (uint256): 1000000000000000000000000000
Arg [5] : virtualTokenReserves (uint256): 1000000000000000000000000000
Arg [6] : virtualCollateralReserves (uint256): 10000000000000000
Arg [7] : feeBasisPoints (uint256): 100
Arg [8] : dexFeeBasisPoints (uint256): 0
Arg [9] : migrationFeeFixed (uint256): 1000000000000000
Arg [10] : poolCreationFee (uint256): 0
Arg [11] : mcLowerLimit (uint256): 354083913341829221
Arg [12] : mcUpperLimit (uint256): 400000000000000000
Arg [13] : tokensMigrationThreshold (uint256): 831946755407653907465372466
Arg [14] : treasury (address): 0x0d5d54760F829b0aC8DdDC3763f351963Db31544
Arg [15] : positionManager (address): 0x2659C6085D26144117D904C46B48B6d180393d27
Arg [16] : dexTreasury (address): 0x0d5d54760F829b0aC8DdDC3763f351963Db31544
Arg [17] : poolFee (uint24): 3000
Arg [18] : lpFeeReceiver (address): 0x0d5d54760F829b0aC8DdDC3763f351963Db31544


-----Encoded View---------------
23 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000240
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000280
Arg [3] : 00000000000000000000000095c94381522ccbc602843615c6c28b53c1c6121a
Arg [4] : 0000000000000000000000000000000000000000033b2e3c9fd0803ce8000000
Arg [5] : 0000000000000000000000000000000000000000033b2e3c9fd0803ce8000000
Arg [6] : 000000000000000000000000000000000000000000000000002386f26fc10000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000064
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [9] : 00000000000000000000000000000000000000000000000000038d7ea4c68000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [11] : 00000000000000000000000000000000000000000000000004e9f571736b8065
Arg [12] : 000000000000000000000000000000000000000000000000058d15e176280000
Arg [13] : 000000000000000000000000000000000000000002b02b93faf277769ff20332
Arg [14] : 0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544
Arg [15] : 0000000000000000000000002659c6085d26144117d904c46b48b6d180393d27
Arg [16] : 0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000bb8
Arg [18] : 0000000000000000000000000d5d54760f829b0ac8dddc3763f351963db31544
Arg [19] : 0000000000000000000000000000000000000000000000000000000000000009
Arg [20] : 54657374204d656d650000000000000000000000000000000000000000000000
Arg [21] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [22] : 544d450000000000000000000000000000000000000000000000000000000000


Deployed Bytecode Sourcemap

672:16819:10:-:0;;;;;;;;;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1241:49;672:16819;;;;;;;;;;;;;;;;;;;;;1759:26;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;887:33;672:16819;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;;672:16819:10;;;;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;672:16819;2740:14;672:16819;;;;2736:43;;6754:82;6755:40;6770:25;672:16819;6755:40;;:::i;:::-;6800:35;672:16819;6800:20;672:16819;6800:35;:::i;:::-;6754:82;;:::i;:::-;6867:34;;;;:::i;:::-;6941:30;;;:39;:30;;;;;:::i;:::-;:39;:::i;:::-;7010:8;7020;7010;;7020;:::i;:::-;7072:6;7059:11;;7072:6;:::i;:::-;672:16819;;7094:50;;7090:84;;672:16819;;7231:48;7397:12;672:16819;7185:36;672:16819;;;6800:20;672:16819;7185:36;:::i;:::-;6800:20;672:16819;6770:25;672:16819;7231:48;:::i;:::-;6770:25;672:16819;7322:27;2840:10;;7322:27;:::i;:::-;7390:4;2840:10;7397:12;:::i;:::-;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;;7090:84;-1:-1:-1;;;7153:21:10;;672:16819;;7153:21;2736:43;-1:-1:-1;;;2763:16:10;;672:16819;;2763:16;2836:47;-1:-1:-1;;;2870:13:10;;672:16819;;2870:13;672:16819;;;;;;;;;;;;;;967:40;672:16819;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;:::i;:::-;;;;:::i;:::-;;;;;;;;;;3561:11:1;672:16819:10;;;3561:27:1;672:16819:10;;;;;;-1:-1:-1;672:16819:10;;;;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1617:30;672:16819;;;;;;;;;;;;;;;;;;;;;;1791:42;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;;1297:42;672:16819;;;;;;;;;;;;;;;;;;1579:32;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;1345:40;672:16819;;;;;;;;;;;;;;;;;;;1013:57;672:16819;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;14237:4;672:16819;;;;-1:-1:-1;;;;;672:16819:10;;;;;14231:10;;:37;;672:16819;14227:92;;3388:5:1;672:16819:10;;;735:10:5;3388:5:1;:::i;:::-;672:16819:10;;;;;;;14227:92;-1:-1:-1;;;14277:42:10;;672:16819;;14277:42;14231:37;672:16819;;14245:23;672:16819;;;;14231:37;;672:16819;;;;;;;;;;;;;1430:19;672:16819;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;:::i;:::-;;;;;;;-1:-1:-1;672:16819:10;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;;;;;;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;11615:25;672:16819;;11643:8;672:16819;;;;;;11643:8;672:16819;;;;;;;;11643:8;11614:77;11615:52;672:16819;2881:12:1;672:16819:10;11615:52;;:::i;:::-;11671:20;672:16819;11614:77;;:::i;:::-;672:16819;;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;8324:31;672:16819;;-1:-1:-1;;;;672:16819:10;;;8392:22;672:16819;;;-1:-1:-1;;;8424:55:10;;8445:15;-1:-1:-1;;;;;672:16819:10;;8424:55;;672:16819;;;;;;;;;;;;8424:55;672:16819;-1:-1:-1;8424:4:10;:55;;;;;;;;672:16819;8548:33;;;;;:::i;:::-;8642:17;;13390:9;8867:101;13437:19;2004:6;13377:22;13390:9;13377:22;;:::i;:::-;672:16819;13437:19;;;:::i;:::-;8867:83;8690:8;8714:15;8867:74;8714:15;8700:29;;;;;;:::i;:::-;;;:::i;:::-;8773:6;8760:11;;8773:6;:::i;:::-;8812:12;8424:4;;8812:12;:::i;:::-;8867:60;:25;672:16819;8895:32;8867:60;;:::i;:101::-;9066:5;;-1:-1:-1;;;;;672:16819:10;;8424:4;9050:21;672:16819;;;8424:4;9050:71;672:16819;;-1:-1:-1;;;9197:25:10;;672:16819;;;;;9197:25;;;;;;;;672:16819;9197:25;;;9050:71;-1:-1:-1;672:16819:10;;-1:-1:-1;;;9179:77:10;;-1:-1:-1;;;;;672:16819:10;;;;9179:77;;672:16819;;;;;;;;;;;;9248:7;672:16819;;8424:55;672:16819;;;;;;;;;;;;9179:77;;672:16819;;;9179:77;;;;;;;672:16819;9179:77;;;9050:71;-1:-1:-1;;;;;;672:16819:10;;9266:68;;9050:71;-1:-1:-1;8424:4:10;9369:23;;;:60;;;;;;;9464;;;;;;9999:2;9981:15;672:16819;9981:15;;;672:16819;;;;;;2240:6;672:16819;;;;;;;;;;;;;;;;9590:422;;672:16819;;;;9590:422;;2240:6;;;672:16819;9590:422;;2192:7;;;2240:6;;9590:422;;;2240:6;;;9590:422;;;672:16819;;;9590:422;;;672:16819;;;;9590:422;;672:16819;;;;;9590:422;;;672:16819;;;;9590:422;;;8424:4;;672:16819;;9590:422;;;672:16819;;;;;;;;;10046:53;;672:16819;;;;;2240:6;;672:16819;;10046:53;;672:16819;;;;;;2240:6;;672:16819;;2240:6;;672:16819;2240:6;672:16819;8424:55;2240:6;;672:16819;2240:6;672:16819;;9179:77;2240:6;;;;672:16819;;2240:6;;;;;;;;672:16819;2240:6;;;;672:16819;2240:6;;;;672:16819;2240:6;;;;672:16819;;;;;;2240:6;;672:16819;2240:6;;;672:16819;2240:6;;;;672:16819;9590:422;10046:53;;;;;;;;;;;;672:16819;10046:53;;;9464:60;672:16819;9999:2;672:16819;10191:27;;;;;672:16819;;-1:-1:-1;;;10191:27:10;;672:16819;;;;;10191:27;;;;;;;;;9464:60;10232:21;;10228:108;;9464:60;10424:59;;;;;;672:16819;;;9179:77;672:16819;;;;;;;;;10424:59;;8424:4;672:16819;10424:59;;672:16819;2240:6;672:16819;2240:6;;672:16819;8424:4;:55;2240:6;;672:16819;10424:59;;;;;;;;9464:60;8424:4;;672:16819;;8424:4;;672:16819;;;;;;;10616:25;10612:99;;9464:60;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;10612:99;10678:21;8424:4;;10678:21;:::i;:::-;10612:99;;;10424:59;;;;;;:::i;:::-;672:16819;;10424:59;;;;672:16819;;;;;;;;;10424:59;672:16819;;;10228:108;10303:21;;;;;:::i;:::-;10228:108;;;10191:27;;;;;672:16819;10191:27;;:::i;:::-;672:16819;10191:27;;;;;672:16819;;;;;;;;;10191:27;672:16819;;;10046:53;;;9590:422;10046:53;;9590:422;10046:53;;;;;;9590:422;10046:53;;;:::i;:::-;;;2240:6;;;;672:16819;;;2240:6;;;-1:-1:-1;;;;;672:16819:10;;;;;10046:53;;;;;;-1:-1:-1;10046:53:10;;672:16819;;;;;;;;;;;;;;;;;;;;;;;;9464:60;;;;;9369;;;;;9266:68;672:16819;;;9308:15;672:16819;;;9308:15;672:16819;9266:68;;;9179:77;;;;672:16819;9179:77;672:16819;9179:77;;;;;;;;:::i;:::-;;;;;:::i;:::-;;;;;;;;;9197:25;;;;;672:16819;9197:25;672:16819;9197:25;;;;;;;:::i;:::-;;;;;9050:71;8424:4;9050:71;;;8424:55;672:16819;8424:55;;672:16819;8424:55;;;;;;672:16819;8424:55;;;:::i;:::-;;;672:16819;;;;;;;;;;8424:55;672:16819;;;;8424:55;;;-1:-1:-1;8424:55:10;;2836:47;2870:13;;;672:16819;2870:13;672:16819;;2870:13;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;;;1537:36;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;1166:5:3;672:16819:10;;:::i;:::-;;;735:10:5;1135:5:3;735:10:5;;1135:5:3;;:::i;:::-;1166;:::i;672:16819:10:-;;;;;;-1:-1:-1;;672:16819:10;;;;;;2017:60;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1114:34;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;-1:-1:-1;;;;;672:16819:10;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1155:37;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;1498:33;-1:-1:-1;;;;;672:16819:10;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;672:16819;2586:14;672:16819;;;;2582:43;;5708:4;672:16819;;;;;;;;;;5690:41;;5686:81;;5913:52;5803:9;5913:52;:::i;:::-;5996:8;6006;5996;;;;6006;:::i;:::-;6058:6;6045:11;;6058:6;:::i;:::-;6137:20;672:16819;6109:48;;;;:::i;:::-;672:16819;6108:108;6162:25;672:16819;6162:53;;;;;:::i;6108:108::-;6231:25;;;6227:59;;6442:9;6297:33;;;6340:54;6297:33;;:::i;:::-;6137:20;672:16819;6340:54;:::i;:::-;6162:25;672:16819;2840:10;5708:4;6442:9;:::i;:::-;13870:17;;:::i;:::-;13907:12;-1:-1:-1;13898:215:10;;672:16819;13715:17;;:::i;:::-;13752:12;-1:-1:-1;13743:57:10;;672:16819;;;5803:9;672:16819;;;;;;;;;;;;;;;;;;13743:57;13773:27;;;672:16819;13773:27;672:16819;;13773:27;13898:215;2586:14;672:16819;;-1:-1:-1;;;;672:16819:10;-1:-1:-1;;;672:16819:10;;;5708:4;-1:-1:-1;672:16819:10;;;;;;;;;;;14053:49;672:16819;13898:215;;6227:59;6265:21;;;672:16819;6265:21;672:16819;;6265:21;5686:81;5740:27;;;672:16819;5740:27;672:16819;;5740:27;2582:43;2609:16;;;672:16819;2609:16;672:16819;;2609:16;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1198:37;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;2083:30;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;692:5:3;672:16819:10;;735:10:5;692:5:3;:::i;672:16819:10:-;;;;;;-1:-1:-1;;672:16819:10;;;;;;;2761:2:1;672:16819:10;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;-1:-1:-1;;;;;672:16819:10;10899:23;;672:16819;;;;;10955:25;672:16819;;;10955:25;672:16819;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;;;:::i;:::-;14505:4;672:16819;;;;;-1:-1:-1;;;;;672:16819:10;;;;;14499:10;;:37;;672:16819;14495:92;;4890:5:1;735:10:5;4854:5:1;735:10:5;;4854:5:1;;:::i;:::-;4890;:::i;14495:92:10:-;14545:42;;;672:16819;14545:42;672:16819;;14545:42;14499:37;672:16819;;14513:23;672:16819;;;;14499:37;;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;12033:45;:18;672:16819;12072:4;672:16819;;;;;;;;;12033:45;;:::i;:::-;2004:6;672:16819;;;;;;2004:6;672:16819;;;;;;;12031:89;12096:24;;12031:89;;:::i;:::-;12148:3;12137:14;;12148:3;;;12137:70;672:16819;12148:3;672:16819;;;;;;12137:70;2004:6;12161:21;;2004:6;;;12161:45;672:16819;2004:6;12137:70;;12161:45;672:16819;12161:45;12137:70;;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;2854:7;-1:-1:-1;;;;;672:16819:10;2840:10;:21;2836:47;;1899:1:7;2702:7;672:16819:10;2702:18:7;2698:86;;1899:1;2702:7;672:16819:10;11187:15;672:16819;11187:20;;;672:16819;;11406:13;672:16819;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;11293:221;;672:16819;;;;11293:221;;672:16819;;;11293:221;;;672:16819;;;;;;;;;11256:268;;672:16819;;11256:268;;672:16819;;;;;;;;;;;;;;;;;;;;;;;;;;;11256:268;672:16819;;;;;;;11256:15;672:16819;11256:268;;;;;;672:16819;;;11256:268;;;672:16819;;;;1857:1:7;2702:7;672:16819:10;;;;;;;;;;;11256:268;;;672:16819;11256:268;;672:16819;11256:268;;;;;;672:16819;11256:268;;;:::i;:::-;;;672:16819;;;;;;;;;;;;11256:268;;;;;-1:-1:-1;11256:268:10;;672:16819;;;-1:-1:-1;;;672:16819:10;;;;;;;;;;;;-1:-1:-1;;;672:16819:10;;;;;;;2698:86:7;2743:30;;;672:16819:10;2743:30:7;672:16819:10;;2743:30:7;672:16819:10;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1077:31;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;2881:12:1;672:16819:10;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;926:35;672:16819;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;;;;;;;;;;;;;;7628:524;;;7730:39;7871:31;7789:17;7834:32;7730:39;7833:70;7730:39;;:::i;:::-;7789:17;;;;;:::i;:::-;7834:32;;;:::i;:::-;7871:31;;:::i;7833:70::-;7628:524;;672:16819;;;;;;;;;;7628:524;7947:23;;7946:52;7947:23;7975:22;7947:23;;:::i;7946:52::-;8125:16;8094:17;8050:24;;;:::i;:::-;8094:17;;:::i;:::-;8125:16;;;:::i;:::-;7628:524;;;672:16819;;;;;;-1:-1:-1;;672:16819:10;;;;1724:28;672:16819;;;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;:::i;:::-;;;735:10:5;;9717:19:1;9713:89;;-1:-1:-1;;;;;672:16819:10;;9815:21:1;;9811:90;;735:10:5;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;9989:31:1;672:16819:10;735:10:5;9989:31:1;;672:16819:10;;;;;;;9811:90:1;9859:31;;;672:16819:10;9859:31:1;672:16819:10;;;;;9859:31:1;9713:89;9759:32;;;672:16819:10;9759:32:1;672:16819:10;;;;;9759:32:1;672:16819:10;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;2119:31;672:16819;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;1837:5:1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;1837:5:1;672:16819:10;;;;;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;;;;;;;;;;;;;;-1:-1:-1;672:16819:10;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;;;2004:6;672:16819;;;;;;;;;-1:-1:-1;;672:16819:10;;;;1392:32;-1:-1:-1;;;;;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;:::o;:::-;;;;-1:-1:-1;;;;;672:16819:10;;;;;;:::o;:::-;;;;-1:-1:-1;;;;;672:16819:10;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;:::o;:::-;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;-1:-1:-1;;;;;672:16819:10;;;;;;;:::o;11734:199::-;11815:25;672:16819;11843:8;672:16819;;;;;;11843:8;672:16819;;;;;;;11814:82;11815:57;11843:8;672:16819;11854:18;672:16819;11815:57;;:::i;11814:82::-;672:16819;11734:199;:::o;12220:250::-;12345:16;2004:6;12220:250;12355:6;12345:16;;:::i;:::-;672:16819;12442:21;2004:6;12395:23;12409:9;12395:23;;:::i;:::-;672:16819;12442:21;;;:::i;:::-;12220:250;:::o;12476:776::-;;2004:6;672:16819;;;;;;2004:6;672:16819;;;;;;;13091:6;672:16819;;2004:6;672:16819;;2004:6;672:16819;;;13048:50;13124:19;13048:50;2004:6;13048:50;;:::i;:::-;13124:19;;;:::i;7888:206:1:-;;;;-1:-1:-1;;;;;672:16819:10;7958:21:1;;7954:89;;672:16819:10;7977:1:1;672:16819:10;7977:1:1;672:16819:10;;;7977:1:1;672:16819:10;;6244:19:1;;;6240:115;;672:16819:10;;7977:1:1;672:16819:10;;6987:25:1;672:16819:10;;;;;;;;;;;;;6714:21:1;672:16819:10;;6714:21:1;672:16819:10;;;;;;6987:25:1;7888:206::o;6240:115::-;6290:50;;;;;7977:1;6290:50;;672:16819:10;;;;;;7977:1:1;6290:50;7954:89;8002:30;;;7977:1;8002:30;7977:1;8002:30;672:16819:10;;7977:1:1;8002:30;13469:173:10;13562:28;13469:173;;;;;13562:28;;672:16819;;;;;;;;;;;;;;;;;-1:-1:-1;;672:16819:10;;;;;:::i;:::-;;;13562:28;672:16819;;;;;;13604:5;13600:35;;13469:173::o;13600:35::-;13618:17;;;13562:28;13618:17;;13562:28;13618:17;672:16819;;;5297:300:1;-1:-1:-1;;;;;672:16819:10;;5380:18:1;;5376:86;;-1:-1:-1;;;;;672:16819:10;;5475:16:1;;5471:86;;672:16819:10;5396:1:1;672:16819:10;5396:1:1;672:16819:10;;;5396:1:1;672:16819:10;;6244:19:1;;;6240:115;;672:16819:10;6987:25:1;672:16819:10;;;;5396:1:1;672:16819:10;5396:1:1;672:16819:10;;;;5396:1:1;672:16819:10;;;5396:1:1;672:16819:10;5396:1:1;672:16819:10;;;5396:1:1;672:16819:10;;;;;;;;;;;;6987:25:1;5297:300::o;6240:115::-;6290:50;;;;5396:1;6290:50;;672:16819:10;;;;;;5396:1:1;6290:50;5471:86;5514:32;;;5396:1;5514:32;5396:1;5514:32;672:16819:10;;5396:1:1;5514:32;10319:476;-1:-1:-1;;;;;672:16819:10;;;-1:-1:-1;672:16819:10;;;;;;;;;;;;;;;;;;;;;;;;;;10319:476:1;;-1:-1:-1;;10484:36:1;;10480:309;;10319:476;;;;;:::o;10480:309::-;10540:24;;;10536:130;;9717:19;;9713:89;;-1:-1:-1;;;;;672:16819:10;;9815:21:1;9811:90;;-1:-1:-1;672:16819:10;3561:11:1;672:16819:10;;;-1:-1:-1;672:16819:10;9910:27:1;672:16819:10;;;;;;-1:-1:-1;672:16819:10;;;;-1:-1:-1;672:16819:10;;;;;10480:309:1;;;;;;10536:130;10591:60;;;;;;-1:-1:-1;10591:60:1;672:16819:10;;;;;;10591:60:1;672:16819:10;;;;;;-1:-1:-1;10591:60:1

Swarm Source

ipfs://6cfa62cf90b4b2aeae4932196831ad4bd2e526f89ce1829304325e2ad92fcfaa
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.